cvuTt ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
PFijmeni: Hriadelova Jméno: Anna Méaria Osobni &islo: 466067

Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitact

Studijni program: Oteviena informatika

Specializace: Softwarové inzenyrstvi
_ J
Il. UDAJE K DIPLOMOVE PRACI
4 ™

Nazev diplomové prace:

Aplikace strojového uceni ve webové aplikaci pro socialni zdrzenlivost

Nazev diplomové prace anglicky:

Machine Learning Pipeline inside of the Web Application for Social Distancing

Pokyny pro vypracovani:

1) Seznamte se se strukturou webové aplikace a metodami které vyuziva.

2) Prostuduijte si softwarovy stack webové aplikace.

3) Analyzujte vykon vybrané webové aplikace.

4) Upravte architekturu webové aplikace, tak aby byly jednotlivé ¢asti spravné zapouzdreny.

5) Implementujte procesy pro nasazovani, testovani a verzovani statistickych model(i ve webové aplikaci.
6) Zhodnotte dopad naimplementovanych zmén v architekture aplikace.

Seznam doporucené literatury:

1) Krajnik, Tomas, Tomas Vintr, Sergi Molina, Jaime Pulido Fentanes, Grzegorz Cielniak, Oscar Martinez Mozos, George
Broughton, and Tom Duckett. “Warped Hypertime Representations for Long-Term Autonomy of Mobile Robots.” IEEE
Robotics and Automation Letters 4, no. 4 (October 2019): 3310—17. https://doi.org/10.1109/Ira.2019.2926682.

2) Vural, Hulya, Murat Koyuncu, and Sinem Guney. “A Systematic Literature Review on Microservices.” In Computational
Science and Its Applications — ICCSA 2017, 203-17. Springer International Publishing, 2017.
https://doi.org/10.1007/978-3-319-62407-5_14.

3) Hapke, Hannes, and Catherine Nelson. "Building Machine Learning Pipelines." 2020. ISBN: 9781492053194

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Zdenék Rozsypalek, katedra poéitaci FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 22.06.2021 Termin odevzdani diplomové prace: 04.01.2022

Platnost zadani diplomové prace: 19.02.2023

Ing. Zdenék Rozsypalek podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)
\\ J
lll. PREVZETI ZADANI
é Diplomantka bere na védomi, Ze je povinna vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. A
Seznam pouzité literatury, jinych pramen(a jmen konzultantu je tfeba uvést v diplomové praci.
S Datum pfevzeti zadani Podpis studentky)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Machine Learning Pipeline inside of the
Web Application for Social Distancing

Bc. Anna Maria Hriadelova

Supervisor: Ing. Zdenék Rozsypalek
Field of study: Open Informatics
January 2022

ii

Acknowledgements

I would like to thank my thesis supervi-
sor Zdenék Rozsypdlek for his guidance,
feedback, and patience during the devel-
opment of this thesis.

At last, my gratitude belongs to my family
and friends for their support and care.

iii

Declaration

I declare that I worked out the presented
thesis independently and I cited all refer-
ences according to Methodical instruction
about ethical principles for academic the-
sis writing.

In Prague, 4. January 2022

Abstract

This thesis focuses on the analysis of the
structure of the web application for social
distancing, proposal, and implementation
of changes in the application architecture
and the integration of the Machine Learn-
ing Pipeline. During the work, the al-
gorithm for estimating the occupancy of
places from Google as the state of the art,
its functionality, advantages, and disad-
vantages, was investigated. Within the
work, the individual parts of the web ap-
plication kdynakoupit.cz and the method-
ologies that are used in the implementa-
tion were described in detail. An impor-
tant part of the research was the study of
the implementation of the Machine Learn-
ing Pipeline using modern tools and tech-
niques, from the ingesting of new data,
through their validation to the evaluation
of models. The practical part of the the-
sis deals with the implementation of this
cycle of machine learning and the separa-
tion of individual parts of the application
according to their responsibilities into sev-
eral separate microservices. A database,
which is used to store and version datasets
and models, was also implemented. The
last part deals with the evaluation of the
implemented parts and the discussion of
the achieved results.

Keywords: microservices, machine
learning pipeline, docker, containers,
social distance

Supervisor: Ing. Zdenék Rozsypalek

iv

Abstrakt

Tato praca sa zameriava na analyzu struk-
tury webovej aplikacie pre socidlnu zdr-
zanlivost, ndvrh a implementéciu zmien
architektury aplikacie a integraciu kanalu
strojového cenia. Pocas tejto prace bol
preskimany algoritmus pre predpoklada-
nie zaplnenosti miest od spolo¢nosti Go-
ogle, jeho vlastnosti, vyhody a nevyhody.
V ramci prace boli detailne opisané jed-
notlivé casti webovej aplikacie kdynakou-
pit.cz a metodoldgie, ktoré su vyuzivané
pri implementéacii. Délezitou castou vy-
skumu bolo studovanie implementécie ka-
nélu strojového ucenia pomocou moder-
nych nastrojov a technik, od prijimania
novych dat, cez ich validaciu po evaluaciu
modelov. Prakticka cast prace sa zaobera
prave implementiciou tohto cyklu stro-
jového ucenia a oddeleniu jednotlivych
Casti aplikdcie podla ich zodpovednosti
do viacerych samostatnych mikrosluzieb.
Implementovana bola aj databaza, ktora
slizi na ukladanie a verzovanie datovych
sadov a modelov. Koniec prace sa zaobera
hodnotenim implementovanych casti a dis-
kusiou nad dosiahnutymi vysledkami.

Klacové slova: mikrosluzby, kanél
strojového ucenia, docker,
kontajnerizacia, socidlna zdrzanlivost

Preklad nazvu: Aplikovanie strojového
ucenia do webovej aplikicie pre socidlnu
zdrzanlivost

Contents

1 Introduction 1
1.1 Outline of the Thesis...........
2 Related work 3
2.1 State of the art 3

2.2 Kdy nakoupit - application for

social distancing
221 Explorer [
2.2.2 Recommender
2.2.3 Occupancy model
23 Summary
3 Methodology 13|
3.1 Microservices vs. Monolith. 13
3.1.1 Monolithic architecture 13
3.1.2 Microservices architecture ... [15]

3.2 Containerization and container

orchestration 19
3.2.1 History
3.22Docker 22
3.2.3 Kubernetes................
3.3 Machine Learning Pipelines

3.3.1 Data ingestion and versioning

3.3.2 Data Validation............ 1311
3.3.3 Data Preprocessing.........
3.3.4 Model Training

3.3.5 Model analysis.............
3.3.6 Model deployment
3.3.7 Pipeline Orchestration
3.3.8 TensorFlow
3.3.9 Apache Beam

34 Summary

4 Implementation

4.1 Proposed changes

4.2 Machine Learning Pipeline
4.2.1 Data ingestion
4.2.2 Data validation
4.2.3 Data preprocessing
4.2.4 Creation of models
4.2.5 Models evaluation..........
4.2.6 Model deployment

4.3 Summary

5 Impact of implemented changes
5.1 Microservices decomposition ...
5.2 Data validation...............
5.3 Models versioning.
5.4 Models evaluation

5.5 Summary,

6 Proposal for further application
development

7 Conclusion

Bibliography

A Additional Figures

vi

Figures
2.1 Application architecture

2.2 Explorer iOS app

2.3 Method overview [1]

3.1 Monolithic architecture [2]

3.2 Microservices architecture [2] . . .

3.3 Different data storage based on the
requirement [3]

3.4 Comparison of virtualization and
containerization [4]..............
3.5 Docker architecture [5]

3.6 The components of a Kubernetes
cluster [6]

3.7 Model Life Cycle [7]...........

3.8 TFX components and libraries [7]

4.1 New application architecture ...
4.2 ExampleGen component output . [42

4.3 TFDV numeric feature statistics

visualization on our dataset [44]
4.4 TFDV categorical feature statistics
visualization on our dataset

4.5 Generated validation dataset
against traning dataset - detailed on
crowded_ratio feature

4.6 Generated validation dataset
against traning dataset - detailed on
type feature

4.7 Precision and recall [§]

vii

5.1 Classification metrics represented

ingraphs
A.1 Generated statistics on training

and validation sets [71]
A.2 Detailed view on a specific place

with traffic graph

Tables

4.1 Data Schema
4.2 Data Domain 46|
5.1 Confusion matrix H9
5.2 Classification metrics results ... 60

viii

Chapter 1

Introduction

For the last two years, almost everyone started working or studying from
home because of a worldwide pandemic. Everyday life changed from day to
day, we wear face masks to protect ourselves and to protect others and we try
to keep our distance from each other in public places so we don’t get infected.
Living a busy life and at the same time trying to keep a distance while being
in a public place is very hard to achieve for most of us. A person that has a
job and family does not have time to wait until the queue to the supermarket
or pharmacy is gone, or an older person that his immunity is very fragile
would appreciate knowing when is the best time to go, for example, shopping.

Google provides information about the busyness of the specific place so it
can recommend to you when is the best time to go shopping while avoiding
queues or busy places. This feature is available on Google Maps under the
"popular times". The problem with calculating such predictions is that Google
is using personal data such as users’ location and time spent on a specific
place. Not everybody is a fan of being "tracked" especially when nowadays
personal privacy is the key for every company.

A team of scientists at the Laboratory of Chronorobotics at the Artificial
Intelligence Center, CTU Prague, had the idea to create a web application
that estimates the crowdedness of specific places with respect to user privacy
by using the model that is built on the basis of artificial intelligence named
FreMEn, which is used, for example, in long-term deployments of robots in
environments. The idea was to create an application for volunteers that will
be providing us the data about the crowdedness in a short questionnaire. The
system can work even with a relatively small amount of data and can model
and create predictions, based on probability and other cues, even for places
for which it has no available data yet.

In this work, we focus on the analysis of applications structure and method-
ology, research of architecture of microservices and its implementation while

1. Introduction

following the rules and key concepts of that architecture style, and implemen-
tation of the machine learning pipeline into the application.

. 1.1 Outline of the Thesis

In the second chapter, we explain the purpose of the web application for
social distancing kdynkoupit.cz and we describe the overall architecture and
responsibilities of separate parts of the application. We also describe the
state of the art, its features, advantages, and disadvantages.

In the third chapter, we dive into the methodology that we use in the
implementation of the application, and we research methods for improvement.
An important part of the research is studying modern technologies and tools
for creating machine learning pipelines that create a workflow of automation
of the model life cycle.

In the fourth chapter, we describe the proposed changes based on the analysis
described in the previous chapter and the implementation of these changes.

In the fifth chapter, we discuss the impact of implemented changes and
their benefits. An important part is the model evaluation by using different
classification metrics, where we discuss the results we achieved.

The sixth chapter is dedicated to the proposal of future work on the application.
We discuss what other improvements can be done to enhance the accuracy of
the estimator and which steps can be improved in the workflow of automation
in machine learning pipelines.

Chapter 2

Related work

Kdynakoupit.cz is a community website for sharing information about the
crowdedness of shops (and other places). It can recommend you the best
time to visit your favorite shop, so that you can avoid queues, crowds, and
waiting outside the shop, all the while saving you time and lowering the risk of
infection or collision. The idea of making such an application came when the
pandemic of Coronavirus started to spread very fast and it was recommended
to avoid crowded areas and places [9].

The plan was to gather necessary data for predicting how busy can be a
certain shop or place in a certain time of the day. The main purpose of
collecting these data is to estimate the crowdedness to help people decide
when to visit a certain supermarket or retail while staying anonymous and
protecting personal privacy which means that we are not acquiring data by
checking the user’s positions unconsciously and thus it makes our idea unique
in the means of gathering the data. These data are supplied from volunteers
and these are used as a dataset for creating precise statistical models that
can create predictions about the crowdedness of a specific place even from
a small amount of data. That’s why we had to develop also an application
for these volunteers so they can easily submit the data which is available
on all operating systems and is called FreMEn Explorer. By sharing these
predictions we are contributing to lowering the concentration of people in
shops, restaurants, pharmacies, and other private or public spaces. The goal
is to erase the need for people to meet simply due to a lack of information if
they prefer to avoid meeting others.

. 2.1 State of the art

Google is one of the biggest corporates that use crowdedness information in
specific places and thus I describe how its predictions work.

3

2. Related work

Google maps launched popular times and live busyness information which
are helpful features that let you see how busy a place tends to be on a given
day and time or in a specific moment which is again a very useful tool during
the pandemic because it can help you with social distancing.

To calculate busyness information Google uses Location History which is
a feature that saves the history of the places where you go and it creates
for you more personalized maps based on the information gathered - this
feature is by default turned off [I0]. Google promises that the analyzed data
are anonymous. This data is instrumental in calculating how busy a place
typically is for every hour of the week. The busiest hour becomes Google’s
benchmark — and Google then displays busyness data for the rest of the
week relative to that hour. This data can also show how long people tend to
spend at certain shops, which is handy if you're planning a day with multiple
activities and want to know how much time to allocate at each place [11].
Because of the Coronavirus, many business places changed their opening
hours or some restriction were made, predictions may not be as reliable as
before.

Google Maps also provide Live, Real-Time busyness information that can
vary from its typical busyness level - again the data are provided from the
Location History feature.

Google says that privacy is their top-level priority when calculating busyness
information and they use differential privacy, which is an advanced statistical
technique when working with the data to ensure anonymity. Differential
privacy uses several methods, including artificially adding “noise” to the
Location History dataset to generate busyness insights without ever identifying
any person. And if the systems don’t have enough data to provide an accurate,
anonymous busyness recommendation, Google doesn’t publish it [12].

Latency Analysis System is a Google’s patent that refers to the understanding
of popular times for a business [13]. This system determines a latency period,
such as a wait time, at a user destination. To determine the latency period, the
latency analysis system receives location history from multiple user devices.
With the location histories, the latency analysis system identifies points-of-
interest that users have visited and determines the amount of time the user
devices were at a point-of-interest. For example, the latency analysis system
determines when a user device entered and exited a point-of-interest. Based
on the elapsed time between entry and exit, the latency analysis system
determines how long the user device was inside the point-of-interest. By
averaging elapsed times for multiple user devices, the latency analysis system
determines a latency period for the point-of-interest. The latency analysis
system then uses the latency period to provide latency-based recommendations
to a user. For example, the latency analysis system may determine a shopping
route for a user [14].

2.2. Kdy nakoupit - application for social distancing

This feature provides wait times in restaurants, grocery shops, or any other
merchandise. This mobile location information history is fine-grained and we
can tell that our activity is processed very detailed in time.

Assuming that the system determines the occupancy level of a specific place
by tracking users’ devices when entering and leaving the point-of-interest,
predictions don’t have to be precise if the point-of-interest is located in a
shopping mall.

People find these features very helpful but most of them are not aware of
how depth in detail can Google track their location a how is Google using its
data to create such predictions.

B 22 Kdy nakoupit - application for social distancing

In the subsections, I am describing the different parts of the application and
their usage. The application is divided into four smaller applications that
make it a whole.

In the Figure [2.1]is shown an as-is diagram that briefly describes the archi-
tecture of the application.

Web frontend Mobile app
A A
Request Backend
Response l Request Response
Recommender service | [Explorer service
API API
Predictor

OSM

Occupancy OSM
model module

—— (—— —— ——
)

-—— —J

Figure 2.1: Application architecture

2. Related work

B 2.2.1 Explorer

FreMEn Explorer is an application that volunteers download and provide
us the data about the busyness. The app is asking for the occupancy level,
which scales from Empty (the lowest occupancy) to Full - Long Queues (the
highest occupancy) and there is also the option Closed if the place is currently
closed. This information is sent together with the time when providing this
info. After that, the next step is to locate the place for that you provide
this information. For locating the places, we are using OpenStreetMap [15]
integrated into our applications. These steps are shown in the Figure [2.2.

After sending the data from the user, the backend of the Explorer receives a
request that contains the data and it will save it to our measurements database
(DataPoints database). These data contain crowdedness ratio (occupancy
level) information, location (longitude, latitude), timezone, time of the day,
the id of the place, category of the place (supermarket, park, pharmacy, etc.),
hashed key, and other information. These data are then used for creating
models for estimating predictions.

Occupancy < Occupancy Map Q
Empty
The shop is almost empty. You
can keep 5m distance.

. sarf‘o 5
Low Traffic S/foka
There are a few people in the
store. It is possible to keep a
distance of more than 2 meters.

Garlzo§/
Medium Traffic o,

It is starting to get crowded in
the shop. It is difficult to keep 2
meters distance.

stuqno‘a"

V Horkach, Pankrac, Nusle SEND
shop

High Traffic
There are queues with medium @
N ‘_\or\'\'ac\"

wait time.

Full - Long Queues
ﬁ?j | am waiting a fairly long time.
The queue is moving slowly.

Closed

What time did you make the
measurement today?

@ COUNTINUE

exyo1ugnodovt

12:45

©)

Klobo!

Figure 2.2: Explorer iOS app

2.2. Kdy nakoupit - application for social distancing

B OpenStreetMaps

OpenStreetMap is built by a community of mappers that contribute and
maintain data about roads, trails, cafés, railway stations, and much more, all
over the world [I5]. People are responsible for putting data to OSM which
means that everyone can manage maps. On our website, we also provide
instructions on how to change data in OSM in case the user cannot see some
specific place he is looking for or the data provided for a place (for example
opening hours or address) are incorrect.

B 2.2.2 Recommender

Another part of the backend is Recommender. Recommender is responsible
for receiving requests from a user that is searching for a certain place or places
in a specific area. If a user is searching for a certain place it means that the
user wants to see how crowded is the place at different times of the day during
the week mostly for the reason of avoiding busy hours. If a user is looking
up a place in a specific area (e.g. Prague - Vinohrady) or without specifying
the area, the result is points-of-interest based on the category (pharmacy,
supermarket, restaurant, etc.) that the user has specified. If the user did
not specify the category, by default all points-of-interest are displayed in this
area. The area is bounded with a bounding box.

The searching request provides user data retrieved from the OSM database
of places in this area if it finds some. Request for detailed information about
a specific place provides data that the machine learning model estimated for
that place.

In Figure [A.2] we can see the detailed view of a specific place with a traffic
graph. The use case is that a user searched for places in a specific area
(Vinohrady, Prague), bounding boxed area is highlighted on the map with
points-of-interest. After that, the user checked the specific place (Zabka,
Rumunskd) and detailed information was shown on the left side with the
address of this place, opening hours (if provided), and traffic graph containing
information about busyness in different timelines of the day (every 15 minutes
during the day). Users can also see predictions of busyness for the next five
days. This graph is generated by our machine learning model.

B 2.2.3 Occupancy model

The occupancy model is a machine learning model that is generated every
day at a certain time because of constant changes in OSM mentioned in
section OpenStreetMaps. To generate an occupancy model, we require

7

2. Related work

sufficient measurements provided, to be model precise. If that condition is
met, dataframe is created and saved into a dataframe comma-separated value
(CSV) file as a dataset for our model.

Dataset is made of several crucial features that our model uses when creating
predictions. Several features that we care about are: coordinates, opening
time, city, city population, highway (whether the place is located nearby
highway), parking (does the place have a parking lot?), living (is it located in
the living area?), public transport (is there available public transport nearby?)
and category (supermarket, pharmacy, park, etc.). These features are so far
very important in creating our model but we can still improve the result of
prediction by adding new features to the dataset (such as place area). We
also include information gathered from volunteers to the dataset, such as
crowded ratio and time of the measurement.

The more diverse measurement data we gather from users, the better pre-
dictions we can provide for different places. For example, if users send us
measurements for the small local supermarket located in the living area,
without public transport and parking lot nearby we can apply this measure-
ment to similar small local supermarkets in the same or even different cities
based on their area size. Another example is a supermarket that belongs to a
well-known supermarket chain with a variety of products and items, located
near the highway, with a parking lot and in the living area, based on the
measurements provided for this place we can predict that this data can be
applied also for other supermarkets with this features.

The more detailed information about how the model works is described in
the next section.

B FreMEn

The method used in the model is built on the basis of artificial intelligence
named FreMEn = Frequency Map Enhancement, which is used, for example,
in long-term deployments of robots in environments that change under the
influence of human action. The goal of using this artificial intelligence is to
ensure the inclusion of robots into human-inhabited areas (such as offices,
hospitals, etc.) that is as non-invasive as possible. This method can be
applied even beyond the domain of robotics. FreMEn can learn, understand,
and evaluate, in which hours and at which places there is a heightened number
of people in a single area, i.e. of potential spreaders of the virus which is the
case we use in our application [16].

FreMEn is based on an assumption that from a mid-to long-term perspective,
some of the environment dynamics are periodic such as crowdedness of the
place during the day (e.g. local supermarket has few people in the morning

8

2.2. Kdy nakoupit - application for social distancing

before people go to work, it is almost empty before noon, medium traffic
during the lunch time and highest traffic is between 4pm - 6pm when people
leave work). To reflect that, FreMEn models the uncertainty of elementary
environment states by a combination of periodic functions rather than by a
constant probability. Modeling the uncertainties as probabilistic functions of
time allows the integration of long-term observations of the same environment
into memory-efficient Spatio-temporal models. These models can predict the
future environment states with a given level of confidence [17].

The concept is based on the idea of frequency transforms, which represent
functions of time by the frequencies that make them up. FreMen simply
takes a given sequence of long-term observations of a particular environment
state, calculates its frequency spectra by the Fourier transform, and stores
the most prominent spectral components. These components correspond to
the observed periodicities of the given environment state. Knowledge of the
spectral components allows calculating the probability of the environment
state for a given time.

In Figure 2.3| we can see the method overview. The data points (a,t) observed
over time (top, black) are first processed by frequency analysis FreMEn to de-
termine a dominant periodicity T. Then, the time ¢ is projected onto a 2d space
(called hypertime) and the vectors (a,t) become (a,cos(2t/T),sin(2t/T))
(bottom, left). The projected data are then clustered (bottom, center, blue) to
estimate the distribution of a over the hypertime space (green). Projection of
the distribution back to the uni-dimensional time domain allows to calculate
the probabilistic distribution of a for any past or future time.

2. Related work

(ast) X b4
X X
— X
L
< X Co N\
SN VAR
X f 02X XX X /O N X
day 1 - : day 2 “time
<t . %
: \
Xy
X

D

hypertime hypertime hypertime
(a, cos(2mt/T), sin(2wt/T))

Figure 2.3: Method overview [I]

For our project to successfully commence and gain universal usability, we
need a large number of volunteers who will be willing to supply data about
the numbers of people in certain areas at particular times. This is the only
way in which we can supply FreMEn with sufficient information to create a
continuous time-space map as I mentioned in the example in the previous
section.

B 23 Summary

In this chapter, I described the popular times feature that is implemented in
Google Maps as state of the art. Popular times or live busyness information
lets you see how busy a place tends to be on a given day and time. Google
uses Latency Analysis System that determines a latency period, such as a
wait time, at a user destination. For example, it determines when a user
device entered and exited a point-of-interest. Based on the elapsed time
between entry and exit, the latency analysis system determines how long the
user device was inside the point-of-interest and by averaging elapsed times for

10

2.3. Summary

multiple user devices, it determines a latency period for the point-of-interest.
Providing these data, it can create a "traffic graph" for specific places on
Google Maps.

Furthermore, I described different parts and their responsibilities of kdy-
nakoupit.cz application. It’s an application for social distancing that predicts
how busy can a specific place be at different times of the day, but with a
respect to user privacy. The measurement data are collected from volunteers
that provide us the information about the location of the place, time of the
measurement, and crowded ratio information (such as empty, low, medium,
or high traffic) through the separate mobile application. These data are
used as a dataset for creating precise statistical models that are able to
create predictions about the crowdedness of a specific place even from a small
amount of data.

11

12

Chapter 3

Methodology

In this thesis, my goal is to investigate points for improvement in the backend
of application for social distancing. In this chapter, I am describing methods
that we currently use in the project and research methods that could be a
potential improvement. In the first part, I describe the differences between
microservices and monolithic architectures, their pros and cons and I explain
the reason why we have chosen microservices architecture. In the next part of
this chapter, I describe how we build and run our application, what technology
we use and what other technologies are useful in deploying and developing
microservice applications. The last part is about Machine Learning Pipelines,
a method for creating processes to accelerate, reuse, manage, and deploy
machine learning models.

. 3.1 Microservices vs. Monolith

In our application for social distancing, we use the microservices architec-
ture as I described in the previous chapter. The reason for choosing this
architecture style is because the project is complex and it has to provide us
a possibility to scale because of the possibility of adding new capabilities
and functionalities. Building such a complex application is not trivial at all.
It requires a team that has some experience in containerization, DevOps,
domain modeling, etc. I have chosen monolithic architecture for comparison
so I can prove the reason for using microservices architecture in our project.

Il 3.1.1 Monolithic architecture

A monolithic architecture is one in which all the components of a given
application are located together in one unit. This drive is usually limited

13

3. Methodology

to one instance of the application’s runtime. Traditional applications often
consist of a web interface, a service layer, and a data layer. In a monolithic
architecture, these layers are combined in an instance of the application (see

Figure [2].

The most common example that comes to mind when discussing monoliths
is a system in which all of the code is deployed as a single process. We can
have multiple instances of this process for robustness or scaling reasons, but
fundamentally all the code is packed into a single process. In reality, these
single process systems can be simple distributed systems in their own right
because they nearly always end up reading data from or storing data into a
database, or presenting information to web or mobile applications.

Modular monolith, on the other hand, is a subset of a single process monolith
in which a single process consists of separate modules. Each module can be
worked on independently, but all still need to be combined for deployment

3.
Monolithic Architecture

User Interface

Business Logic

Data Interface

lT

Database

Figure 3.1: Monolithic architecture [2]

B Advantages

1. Easy to deploy - because of deploying just one application, deployment
should not be a difficult process.

2. Simple to develop - developing a monolithic application requires basic
knowledge of developing any information system, code can be reused

14

3.1. Microservices vs. Monolith

within the monolith itself and it is easy to comprehend.
3. Simple to manage - we have to take care of only one project.

4. Debugging and testing - indivisible unit, running end-to-end testing
or debugging is much faster as well as monitoring, troubleshooting is
greatly simplified.

B Disadvantages

1. Language lock - once we choose a certain language and framework for
an application that is the best at that time, it will be hard to switch or
change the whole implementation to a newer version or completely new
technology.

2. Difficult to digest - as the project grows, the complexity grows as well
and understanding of the codebase becomes hard to digest.

3. Scaling - difficult to scale services independently.

4. Developement of new feature - complexity of development and
deployment management as the code base grows, which slows down
releases and the implementation of new features.

B 3.1.2 Microservices architecture

The following section is based on the book Building microservices [3].

Microservices have become an increasingly popular architecture choice in
the half-decade. Microservices are independently releasable services that are
modeled around a business domain. A service encapsulates functionality and
makes it accessible to other services via networks. One microservice might
represent an inventory, another order management, and yet another shipping,
but together they might constitute an entire system. Microservices are an
architecture choice that is focused on giving you many options for solving
the problems you might face.

From the outside, a single microservice is treated as a black box. It hosts
business functionality on one or more network endpoints, over whatever pro-
tocols are most appropriate. Consumers, whether they’re other microservices
or other sorts of programs, access this functionality via these networked
endpoints. Internal implementation details (such as the technology the ser-
vice is written in or the way data is stored) are entirely hidden from the
outside world. This means microservice architectures avoid the use of shared

15

3. Methodology

databases in most circumstances; instead, each microservice encapsulates its
own database where required.

Microservices embrace the concept of information hiding. Information hiding
means hiding as much information as possible inside a component and exposing

as little as possible via external interfaces. This allows for a clear separation
between what can change easily and what is more difficult to change.

Microservice Architecture

User Interface

N

Microservice

\:

Microservice Microservice Microservice

LT LT T

Figure 3.2: Microservices architecture [2]

B Key concepts

1. Independent Deployability - every service is deployed on its own,
which means that when a change is made to a certain service, only this
service is deployed without the need of deploying the whole application.
To ensure this concept, microservices should be loosely coupled. We
should be able to change one service without having to change anything
else.

2. Modeled around a Business domain - the idea is to define service
boundaries. By modeling services around business domains, we can make
it easier to roll out new functionality.

3. Flexibility - because microservices are deployed separately, they have
easier error correction management and feature issuance. We can update
the service without redeploying the entire application, and if something
goes wrong, roll back the update.

16

3.1. Microservices vs. Monolith

4. Owning Their Own State - it is very common in microservices that
each service has its own database. If one service needs data from another
service database, this service can "ask" for this data. This gives the
microservices the ability to decide what is shared and what is hidden.

B Advantages

1. Technology Heterogenity - microservices system is composed of mul-
tiple services and we can decide to use different technologies inside each
one. That gives us freedom in choosing the right tool for each service
instead of selecting one standardized all-in approach. We are also able
to choose the right data storage depending on what kind of data we
need to store in the database. In Figure [3.3| we can see different parts
in a social network system. Posts that users make can be stored in a
document-oriented data store, pictures could be stored in Blob storage
and for example, users interactions in a graph-oriented database.

Friends
<<golang>>

Posts
<<ruby>>

Pictures
<<java>>

DO;:IL(I)TEent Graph DB Blobsstore

Figure 3.3: Different data storage based on the requirement [3]

2. Robustness - a component of a system may fail, but as long as that
failure doesn’t cascade, we can isolate the problem, and the rest of the
system can carry on working. This is a huge advantage compared to
monolithic service, where if a failure occurs, everything stops working.
With microservices, we can build systems that handle the total failure
of some of the services and degrade functionality accordingly. It is
important to know how to handle such failures and the impact those
failures will have on the end-users of the software.

3. Scaling - with smaller services, we are able to scale these services that
need scaling, and that allows us to run other parts of the system on
smaller, less powerful hardware.

4. Ease deployment - with microservices, we can make a change to a
single service and deploy it independently of the rest of the system. If

17

3. Methodology

a problem occurs, it can be quickly isolated to an individual service,
making fast rollback easy to achieve. It also means that we can get
the new functionality quicker to users. This is one of the main reasons
organizations like Amazon or Netflix use these architectures.

5. Team development - because the team of developers is distributed
depending on the service that is being implemented, we can extract
problems like large codebase and less productivity due to waiting for
others to finish their job. Microservices allow us to better align the
architecture to the organization or team.

There is one of these advantages that I want to describe more - scaling.
Scaling is very important in every system, the reason is that it allows us
to improve the performance of the system, for example by handling more
load or by improving latency. There are four different types of scaling based
on the Scale Cube from The Art of Scalability. The first one is vertical
scaling which means improving the hardware by faster CPU, better 1/0O for
improving latency, etc. Horizontal duplication on the other hand, means
having multiple things capable of doing the same work. We can duplicate
parts (e.g., by creating replicas) of the system to handle more workloads.
Next, data partitioning is diving the work based on some attributes of the
data. That can be for example diving users into two different databases based
on their surname - by that, we can distribute the load. The last type is
functional decomposition, which is a separation of work based on the type, e.g.,
microservice decomposition. By that, we can extract existing functionality
from an existing system and create a new microservice.

B Disadvantages

Microservices architecture, despite all of the benefits I named in the previous
section, has a lot of pain points. Building such a system can become a very
complex task that requires some level of seniority and skills from developers.

1. Technology Overload - each service in the system can be implemented
in a different framework, language and can be using different tools or
technologies. That can lead to technology overload. It is important to
carefully balance the breadth and complexity of the technology we use
against the costs.

2. Cost - the more processes, the more computers, networks, storage, and
supporting software are needed the more costs. Not only does hardware
and software components cost money but also learning new technologies
can have an impact on the costs because of man-hours spent on this.

18

3.2. Containerization and container orchestration

3. Reporting - compared to monolithic architecture, where all the data
are stored in one primary database or its replica, for microservices it can
get more difficult to get reports across all the data because of scattering
the data across multiple isolated schemas.

4. Monitoring and Troubleshooting - it is more difficult to monitor
several applications at the same time instead of monitoring just one.

5. Security - because more information flows over the network between
services, data are becoming more vulnerable. These data could be
potentially part of man-in-the-middle attacks. We have to be sure that
only authorized parties are able to reach the endpoints.

6. Testing - the scope of testing end-to-end tests becomes very large. We
have to run tests across multiple processes, all of which need to be
deployed and configured for the test scenarios.

7. Latency - information that flows within a single process now needs to
be serialized, transmitted, and deserialized over the network. All of this
can result in worsening latency of the system.

8. Data consistency - as I mentioned before data in microservices are
scattered across the database, which can cause a problem in data con-
sistency. The use of distributed transactions in most cases proves to be
highly problematic in coordinating state changes.

Nowadays, microservices are often associated with containerization. Con-
tainerization offers developers more freedom e.g., each component encapsu-
lated in a separate container, may have different dependencies and libraries,
without affecting other parts of the application. In addition, containerization
and microservice architecture have the same purpose - transfer of classic
heavy application into light, flexible, scalable, and easy to operate. I am
describing containerization more accurately in the next section.

. 3.2 Containerization and container orchestration

In this section, I describe how we have deployed our application, whether in
a production or development environment. In the first part, I describe the
ways of deploying microservices applications, and the reason why we chose
containerization. In the next part, I write about Docker and docker compose
technology, which we use in our application. In the last part, I will introduce
Kubernetes technology, which is becoming part of almost every production
microservice application, and its benefits, why we should use it.

19

3. Methodology

B 3.2.1 History

The first concept of application containers was created in 1979 and used
in Unix version 7. It was a chroot command that was used to isolate the
process by changing its root directory on the file system. Further progress in
virtualization and containerization was made as early as 2000 as Free BSD
Jails was developed, a concept that is quite similar to the current Docker
containers. Jails provide more isolation than chroot, in that they virtualize
not only the file system but also the set of users and the network. The same
as the predecessor of Unix, Jail allows you to change the root directory for a
process. In addition, they provide the ability to choose a different IP address
and for each container hostname, set your own set of users and their rights. In
2001 a similar technology has emerged for Linux users, called LinuxVServer.
Linux Containers technologies have contributed to the further development
of containerization in 2008 and Let Me Contain That For You (LMCTFY) in
2013 by Google. These two platforms were the basis for the present Docker,
which was founded in 2013. Originally, Docker used the Linux Containers
platform, then switched to its own library, libcontainers, which is based on
LMCTFY. Just after the founding of Docker, containerization gained its
greatest popularity [18§].

There are big differences between classical architecture, virtualization, and
containerization. An application developed for deployment on a traditional
server architecture is dependent on the target computer’s operating system.
This fact means migration on another server with a different OS forces changes
in the application.

Virtualization, whether using virtual machines or containers, addresses this
problem, as well as a large number of others. In the case of a VM, above
the OS layer, we find the hypervisor, the purpose of which is to emulate
real HW for use in virtual machines. Then each VM appears to be a real
computer with its own OS. VMs needs an operating system that takes up
space and resources of the physical computer. To solve this problem we
can use containers that have a slightly different approach to virtualization.
Containers use a virtualized OS and have only the application with its libraries
and dependencies, so containers are light weighted and more flexible. The
main purpose of containerization is for applications to be written once and run
anywhere [I9]. Containers are an abstraction at the app layer that packages
code and dependencies together. Multiple containers can run on the same
machine and share the OS kernel with other containers, each running as
isolated processes in userspace. Containers take up less space than VMs, can
handle more applications, and require fewer VMs and Operating systems [4].

Using containers we solve the following problems:

1. Application transfer between different environments and operating sys-

20

3.2. Containerization and container orchestration

tems.

2. Speed and efficiency compared to virtualization.

3. Application and host isolation.

On the other hand, it brings up the following disadvantages:

1. Docker and other container platforms are relatively new technologies,

they can face security issues.

2. Storing data in a containerized application is much more complicated.
Containers are designed so that when they are turned off, the data
stored in the container itself loses. For this reason, storage is a common
practice data outside the container, which in itself violates the principle

of isolation and is a security hole.

3. Containers are slower compared to the classic server architecture due to
host system interconnection overheads and containers.

Containerized Applications

Host Operating System

Infrastructure

Virtual Machine

Guest
Operating
System

App A

Virtual Machine

App B

Guest
Operating
System

Virtual Machine

App C

Guest
Operating
System

Infrastructure

Figure 3.4: Comparison of virtualization and containerization [4]

Last but not least part of containerization is container orchestration. Con-
tainer orchestration is the automation of much of the operational effort

21

3. Methodology

required to run containerized workloads and services. This includes a wide
range of things software teams need to manage a container’s lifecycle, includ-
ing provisioning, deployment, scaling, networking, load balancing and more

[20].

B 3.2.2 Docker

This section is based on Docker documentation [5].

Docker is an open platform for developing, shipping, and running applications.
Docker enables us to separate applications from the infrastructure so we are
able to deliver software quickly. With Docker, infrastructure can be managed
in the same ways as we manage our applications. By taking advantage of
Docker’s methodologies for shipping, testing, and deploying code quickly, it is
possible to significantly reduce the delay between writing code and running it
in production. Docker provides the ability to package and run an application
in a loosely isolated environment - container. Before I go further with the
description of Docker’s abilities, I describe docker architecture in short.

Docker uses a client-server architecture. The Docker client talks to the Docker
daemon, which does the heavy lifting of building, running, and distributing
Docker containers. The Docker client and daemon can run on the same
system, or a Docker client can be connected to a remote Docker daemon.
The Docker client and daemon communicate using a REST API, over UNIX
sockets or a network interface. Another Docker client is Docker Compose,
which lets us work with applications consisting of a set of containers.

J

i

docker build --{---

Docker daemon I

va
=~ &,
."' : ~ @ %
A
\
L, — NGiNX

AN
docker pull - I - \'\ 2 :
"y,

SOCKER_FOST o)

docker run —7 \,
N.

”]]]]]]]Iﬂ]]n ~. \/ /

N /

Figure 3.5: Docker architecture [5]

22

3.2. Containerization and container orchestration

Docker deamon or dockerd, listens for Docker API requests and manages
Docker objects such as containers, images, volumes, and networks. It is also
able to communicate with other daemons to manage Docker services.

Docker client is the way that Docker users interact with Docker. It provides
us commands such as docker run, the client sends these commands to
dockerd. The docker command uses the Docker API.

Docker registries store Docker images. Docker Hub is a public registry and
Docker is configured to look for images on Docker Hub by default. Commands
such as docker pull or docker run pull required images from registry.

Docker objects are objects such as image, container, volume, network, or
plugin. The most important ones are image and container.

An image is a read-only template with instructions for creating a Docker
container. Images can be created by ourselves or we can use already existing
ones, that are published in the registry by others. To build our own image,
the Dockerfile must be created first. Dockerfile consists of a set of instructions,
that have to be made in order to create an image and run it. Each instruction
creates a layer in the image and when we change the Dockerfile, only the
layers which have changed are rebuilt - that makes images lightweight, small
and fast when compared to other virtualization technologies.

A container is runnable instance of an image. We can create, start, stop,
move or delete a container using the Docker API or CLI. The container has
the ability to connect to one or more networks and it can have its own storage.
We are able to control how isolated a container’s network, storage, or other
subsystems are from other containers or from the host machine. A container
is defined by its image as well as any configuration options we provide to
it when we create or start it. When a container is removed, any changes
to its state are not stored in persistent storage disappear. Containers are
lightweight and contain everything needed to run the application, so we do
not need to rely on what is currently installed on the host. We are also able
to share containers while we work and be sure that shared containers work in
the same way.

Docker provides tooling and a platform to manage the lifecycle of containers
e.g. developing applications and their components using containers, dis-
tributing and testing the application as a unit, deploying into the production
environment as a container, or an orchestrated service. Because Docker is a
container-based platform it allows highly portable workloads. Containers can
run on local computers or laptops, physical or virtual machines in data cen-
ters, cloud providers, or mixed environments. Docker also makes it easier to
dynamically manage workloads, scaling up or down applications and services
in near real-time. Docker is a cost-effective alternative to hypervisor-based
virtual machines, so we can use more computer compute capacity to achieve

23

3. Methodology

certain business goals. It is suitable for small, medium deployments as well
as for high-density environments.

B Docker Compose

Docker Compose is a tool for defining and running multi-container Docker
applications. With Compose and YAML files we can configure the applica-
tion’s services. YAML is a human-readable data-serialization language. It
is commonly used for configuration files and in applications where data is
being stored or transmitted [21]. With a single command, we create and
start all the services from the configuration. Compose works in production,
development, testing, and staging environment. When we are developing an
application, the ability to run this application in an isolated environment and
interact with it is important. The Compose file provides a way to document
and configure all of the application’s service dependencies such as database,
caches, web service APIs. Using the Compose command-line tool we are
able to start more containers for each dependency with a single command
docker-compose up.

The disadvantage of Compose is that it was originally focused on the devel-
opment and testing workflows, but with new releases, Compose has gained
more production-oriented features. Docker Compose can be used only on
single host deployments.

Another feature of Compose is that it preserves volume data when containers
are created. Volumes are the way of storing container data. Volumes are
stored in the part of the host filesystem which is managed by Docker. Compose
preserves all volumes used by the services. When docker-compose up runs,
if it finds any containers from previous runs, it copies the volumes from the
old container to the new container - this process ensures that the data won’t
get lost. Compose also caches the configuration used to create a container.
When we restart a service that has not changed, Compose reuse the existing
containers [22].

For using Docker Compose following steps are required:
1. Define app’s environment with a Dockerfile so it can be reproduced
anywhere.

2. Define the services that make up the app in docker-compose.yml so they
can be run together in an isolated environment.

3. Run docker compose up command for starting all the services.

Currently, in our application, we defined two docker compose files. One

24

1

)

3.2. Containerization and container orchestration

is for the development environment, the other one is for the production
environment.

The following fragment shows one service called recom defined in our docker-
compose file.

recom:
build:
context: ./ Recommender
dockerfile: ./ Dockerfile

image: recom:latest
container__name: recom
restart: unless —stopped
ports:

- "8001:8000"
volumes:

- ./Recommender:/src

- ./ models:/src/predictor /occupancy_model/
models
env_ file:

- .env.recom

- .env.osm

- .env.db_common
networks:

- backend—dev
depends_ on:

- db__measure

- db__place
command: bash —c ’/src/setup.sh’

Recom service uses an image that’s built from Dockerfile specified in the
context. On the next line, we specify the image name, container name, and
restart policy. Then it binds the container and the host machine to the
exposed ports. Next, we define volumes where container data will be stored.
We also define environment files that are needed for our service. Then the
network container is specified. Depends_on express dependency between
services, recom service depends on measure and place databases. Lastly, we
define the command that runs the service.

B 3.2.3 Kubernetes

The previous section was devoted to the description of containerization and its
benefits. Other important parts of the application’s lifecycle are maintenance,
support, and development. Over time, the application tends to expand with
new functionalities, and with increasing popularity, more users are using the

25

3. Methodology

application and at the same time must provide reasonable response speed
and service availability. Application load is solved by scaling, either vertical
or horizontal. Vertical scalability is achieved by improving the hardware
on which the application runs. Horizontal scaling is about adding system
elements by creating replicas or splitting data. Vertical scalability is more
limited but easier to maintain. Horizontal scalability on the other hand
has problems associated with load balancing between replicas. The external
service that communicates with the replicated element must know which
address to send the query to. In this case, the address means the IP address,
which uses can cause another problem. When deploying the application to
another environment it is not ensured that the network of IP addresses will
remain the same, which means that at any time the application must be
intercepted during the migration.

After solving the above problems, another problem arises, such as defying
the behavior of the system in case of failure of one of the replicated units
or generally some services. In this case, the previous algorithm for load
balancing must rebuild the entire network and at the same time, the service
must be restored. Another problem can be deploying a new version of the
service, especially for critical systems.

A container orchestrator is a tool that solves the above problems. It provides
the user the ability to configure system behavior in the above cases and
automates container management by configuration. Besides that, it provides
a lot of other useful features which I describe further in this section.

Kubernetes, also known as K8s, is a portable, extensible, open-source
platform for managing containerized workloads and services, that facilitates
both declarative configuration and automation. It has a large, rapidly growing
ecosystem. Kubernetes services, support, and tools are widely available.
Kubernetes was first developed by engineers at Google before being open-
sourced in 2014. It is a descendant of Borg, a container orchestration platform
used internally at Google [23].

Kubernetes provides a framework to run distributed systems resiliently. It
takes care of scaling and failover for your application, provides deployment
patterns, and more.

Besides that, Kubernetes schedules and automates container-related tasks
throughout the application lifecycle, including [23]:

1. Deployment - Deploy a specified number of containers to a specified host
and keep them running in the desired state.

2. Service discovery and load balancing - Kubernetes can automatically
expose a container to the internet or to other containers using a DNS
name or I[P address. If traffic to a container is high, Kubernetes is able

26

3.2. Containerization and container orchestration

to load balance and distribute the network traffic so that the deployment
is stable.

3. Rollouts - A rollout is a change to a deployment. Kubernetes lets us
initiate, pause, resume, or roll back rollouts.

4. Storage orchestration - Kubernetes allows us to automatically mount
a storage system of your choice, such as local storage, public cloud
providers, and more.

5. Self-healing - When a container fails, Kubernetes can restart or replace
it automatically to prevent downtime. It can also take down containers
that don’t meet your health-check requirements.

6. Secret and configuration management - Kubernetes lets us store and
manage sensitive information, such as passwords, OAuth tokens, and SSH
keys. We can deploy and update secrets and application configuration
without rebuilding your container images, and without exposing secrets
in your stack configuration.

To understand Kubernetes better, it is good practice to know its architecture.

r
API server Q-
Cloud
@ provider Cloud controller .
g mancser (C2)
== aidl (optional) =
Controller @
manager =S
‘ —’7 etcd
Node Node Node (persistence store) .
api

/ kubelet .
kubele kube-proxy

S(hed
° 0 0
L1 [90
L . Scheduler Q

Control Plane K-prox: K-prox; K-prox:
S Control plane —————-

000

Node

Figure 3.6: The components of a Kubernetes cluster [6]

1. Cluster - set of worker machines, called nodes, that run containerized
applications. Every cluster has at least one worker node.

2. Container - a lightweight and portable executable image that contains
software and all of its dependencies.

3. Node - a worker machine in Kubernetes.

27

3. Methodology

4. Pod - the smallest and simplest Kubernetes object. A Pod represents a
set of running containers on your cluster.

5. Control plane - the container orchestration layer that exposes the API
and interfaces to define, deploy and manage the lifecycle of containers.

6. Service - an abstract way to expose an application running on a set of
Pods as a network service [24].

A cluster consists of a set of nodes, in which pods are placed. In each node,
more than one pod can be placed and in each pod, more containers can be
placed. Furthermore, the control plane manages the worker nodes and the
pods in the cluster. In production environments, the control plane usually
runs across multiple computers and a cluster usually runs multiple nodes,
providing fault-tolerance and high availability.

B Control Plane components

The control plane’s components make global decisions about the cluster such
as scheduling, as well as detecting and responding to cluster events.

Kube-apiserver provides a REST API that allows users, parts of the cluster,
and external systems to communicate with each other. The interface is
documented with OpenAPI. JSON or Protobuf is used for communication.
Another way to use the apiserver is kubectl, which allows calling the K8s
interface via the command line.

Kubernetes backing store for all cluster data is stored in etcd, which is a
key-value store for distributed environments.

Another important part of the control unit is the scheduler. It assigns new
pods to nodes that correspond with the conditions of deployment. The default
scheduler for K8s is a kube-scheduler.

Kube-controller-manager is a control plane component that runs controller
processes. In Kubernetes, controllers are control loops that watch the state
of your cluster, then make or request changes where needed. Each controller
tries to move the current cluster state closer to the desired state. Logically,
each controller is a separate process, but to reduce complexity, they are all
compiled into a single binary and run in a single process.

Some types of these controllers are:

1. Node controller - responsible for noticing and responding when nodes go
down.

28

3.3. Machine Learning Pipelines

2. Endpoints controller - populates the Endpoints object (that is, joins
Services and Pods).

3. Job controller - watches for Job objects that represent one-off tasks, then
creates Pods to run those tasks to completion.

4. Service Account and Token controllers - create default accounts and API
access tokens for new namespaces.

A similar unit is the cloud-controller-manager. It is also a controller
manager, but unlike kube-control-manager it manages controllers, which are
specific to a given cloud platform. It is used for K8s integration to cloud
platforms (such as AWS or Google Cloud).

B Node components

Node components run on every node, maintaining running pods and providing
the Kubernetes runtime environment.

Kubelet is an agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod. This element reads the configuration files,
defined in either YAML or JSON format and runs containers accordingly, and
checks their health. When the configuration file is deleted from the monitored
folder, kubelet stops the container.

Kube-proxy is a network proxy that runs on each node in a cluster, im-
plementing part of the Kubernetes Service concept. It maintains network
rules on nodes. These network rules allow network communication to Pods
from network sessions inside or outside of the cluster. Kube-proxy uses
the operating system packet filtering layer if there is one and it’s available.
Otherwise, kube-proxy forwards the traffic itself.

B 3.3 Machine Learning Pipelines

The following section is based on the book Building Machine Learning
Pipelines [7].

Machine learning pipelines implement and formalize processes to accelerate,
reuse, manage, and deploy machine learning models. Software engineering
went through the same changes a decade or so ago with the introduction of
continuous integration (CI) and continuous deployment (CD). Back in the
day, it was a lengthy process to test and deploy a web app. These days,
these processes have been greatly simplified by a few tools and concepts.

29

3. Methodology

Previously, the deployment of web apps required collaboration between a
DevOps engineer and a software developer. Today, the app can be tested
and deployed reliably in a matter of minutes. Data scientists and machine
learning engineers can learn a lot about workflows from software engineering.

Pipelines also become more important as a machine learning project grows.
If the dataset or resource requirements are large, the approaches we discuss
allow for easy infrastructure scaling. If repeatability is important, this is
provided through the automation and the audit trail of machine learning
pipelines.

A machine learning pipeline starts with the ingestion of new training data
and ends with receiving some kind of feedback on how a newly trained model
is performing. It includes a couple of steps such as data ingestion, data
validation and preprocessing, model training and analysis, evaluation, and
lastly model deployment. This pipeline is described as a model life cycle
shown in Figure A very important part of the machine learning pipeline
is its automation. These steps could be manually very error-prone and the
solution is automation with a variety of tools. One of the tools is TensorFlow
Extended, which is a library that supplies all of the components that are
needed for building a machine learning pipeline.

Data ingestion/ Data Data Model
versioning validation [rEprocessing training
& e, o
v
Model
tuning
Model Model Madel Model
—1 feedback deployment validation analysis

Figure 3.7: Model Life Cycle [7]

B 3.3.1 Data ingestion and versioning

In this step, the data are processed into a format that the next component
can "digest". This is the point where we also version the incoming data. In
this step of our pipeline, we read data files or request the data for our pipeline
run from an external service. Before passing the ingested dataset to the next
component, we divide the available data into separate datasets (e.g., training
and validation datasets) and then convert the datasets into TFRecord files

30

3.3. Machine Learning Pipelines

containing the data represented as tf.Example data structures. TFRecord is
a lightweight format optimized for streaming large datasets.

B 3.3.2 Data Validation

Before training a new model version, we need to validate the new data.
Data validation focuses on checking that the statistics of the new data are as
expected (e.g., the range, number of categories, and distribution of categories).
It also alerts the data scientist if any anomalies are detected. For example, if
we are training a binary classification model, our training data could contain
50% of Class X samples and 50% of Class Y samples. Data validation tools
provide alerts if the split between these classes changes, where perhaps the
newly collected data is split 70/30 between the two classes. If a model is
being trained with such an imbalanced training set and the data scientist
hasn’t adjusted the model’s loss function, or over/under sampled category X
or Y, the model predictions could be biased toward the dominant category.

B 3.3.3 Data Preprocessing

It is highly likely that we cannot use our freshly collected data and train
the machine learning model directly. In almost all cases, we will need to
preprocess the data to use it for our training runs. Labels often need to be
converted to one or multi-hot vectors. The same applies to the model inputs.
If we train a model from text data, we want to convert the characters of
the text to indices or the text tokens to word vectors. Since preprocessing
is only required prior to model training and not with every training epoch,
it makes the most sense to run the preprocessing in its own life cycle step
before training the model.

B 3.3.4 Model Training

The model training step is the core of the machine learning pipeline. In this
step, we train a model to take inputs and predict an output with the lowest
error possible. With larger models, and especially with large training sets,
this step can quickly become difficult to manage. Since memory is generally
a finite resource for our computations, the efficient distribution of the model
training is crucial.

31

3. Methodology

B 3.3.5 Model analysis

Generally, we would use accuracy or loss to determine the optimal set of
model parameters. But once we have settled on the final version of the model,
it’s extremely useful to carry out a more in-depth analysis of the model’s
performance This may include calculating other metrics such as precision,
recall, and AUC (area under the curve), or calculating performance on a
larger dataset than the validation set used in training.

Another reason for an in-depth model analysis is to check that the model’s
predictions are fair. It’s impossible to tell how the model will perform for
different groups of users unless the dataset is sliced and the performance is
calculated for each slice. We can also investigate the model’s dependence
on features used in training and explore how the model’s predictions would
change if we altered the features of a single training example.

B 3.3.6 Model deployment

Machine learning models can be deployed in three main ways: with a model
server, in a user’s browser, or on an edge device. The most common way
today to deploy a machine learning model is with a model server, which
we will focus on in the next chapter. The client that requests a prediction
submits the input data to the model server and in return receives a prediction.
This requires that the client can connect with the model server.

B 3.3.7 Pipeline Orchestration

All the components of a machine learning pipeline described in the previous
section need to be executed or, as we say, orchestrated, so that the components
are being executed in the correct order. Inputs to a component must be
computed before a component is executed. The orchestration of these steps
is performed by tools such as Apache Beam, Apache Airflow, or Kubeflow
Pipelines for Kubernetes infrastructure.

B 3.3.8 TensorFlow

Machine learning pipelines can become very complicated and consume a lot of
overhead to manage task dependencies. At the same time, machine learning
pipelines can include a variety of tasks, including tasks for data validation,
preprocessing, model training, and any post-training tasks. Google decided
to develop a platform to simplify the pipeline definitions and to minimize the

32

3.3. Machine Learning Pipelines

amount of task boilerplate code to write. The open source version of Google’s
internal ML pipeline framework is TensorFlowExtended (TFX).

TFX provides a variety of pipeline components that cover a good number of
use cases. Following components were available:

1. Data ingestion with ExampleGen

2. Data validation with StatisticsGen, SchemaGen, and the ExampleVal-
idator

3. Data preprocessing with Transform

4. Model training with Trainer

5. Checking for previously trained models with ResolverNode
6. Model analysis and validation with Evaluator

7. Model deployments with Pusher

Data Data Data Model Model analysis Model
ingestion validation preprocessing training and validation deployment

® ‘ ExampleGen l | StatisticsGen l I Transform Trainer ‘ ‘ Evaluator ‘ ‘ Model server ‘
g
=
Q ResolverNode
g
o
[T &
= validator
w
2
= TensorFlow TensorFlow TensorFlow TensorFlow
8 Data validation Transform Model Analysis Serving
—
b - 4

Figure 3.8: TFX components and libraries [7]

All machine learning pipeline components read from a channel to get input
artifacts from the metadata store. Examples of artifacts include raw input
data, preprocessed data, and trained models. Each artifact is associated with
metadata stored in the MetadataStore. The data is then loaded from the path

33

3. Methodology

provided by the metadata store and processed. The output of the component,
the processed data, is then provided to the next pipeline components.

The components of TFX are connected through metadata, instead of passing
artifacts directly between the pipeline components, the components consume
and publish references to pipeline artifacts. Metadata that are created during
pipeline run are saved using Machine Learning Metadata (MLMD) API.
MLMD saves the metadata to a MetadataStore, based on a storage backend
(In-memory database, SQLite, or MySQL).

There are multiple alternatives to TFX such as AeroSolve by Airbnb, Luigi
by Spotify, or Metaflow by Netflix and each of them is designed with specific
engineering stacks in mind.

B 3.3.9 Apache Beam

A variety of TFX components and libraries (e.g., TensorFlow Transform) rely
on Apache Beam to process pipeline data efficiently. Apache Beam offers us
an open-source, vendor-agnostic way to describe data processing steps that
then can be executed in various environments. Since it is incredibly versatile,
Apache Beam can be used to describe batch processes, streaming operations,
and data pipelines. In fact, TFX relies on Apache Beam and uses it under the
hood for a variety of components (e.g., TensorFlow Transform or TensorFlow
Data Validation).

N 34 Summary

In this chapter, I focus on the methodology. In the first part, I describe
the difference between two software architectures. Monolithic architecture,
which is suitable for the software that is being developed in a small team
and serves usually a certain purpose such as a library or school information
system with a database. They are easy to develop, deploy, test and monitor
but in case of adding new functionalities or scaling out the system, several
problems can occur. These issues can be solved by using a microservices
architecture. In microservices, the system is broken into more independent
services and each of the services lives on its own. This can give us a huge
degree of flexibility in choosing technology, handling robustness, and scaling.
On the other hand, this brings up a certain degree of complexity. When core
concepts of microservices are well implemented, the system becomes very
powerful and effective.

The next part is focused on containerization and container orchestration.
Containerization is a form of operating system virtualization, through which

34

3.4. Summary

applications are run in isolated containers, all using the same shared operating
system. A container is a fully packaged and portable computing environment.
The purpose is to be able to run the application anywhere. This is a must-have
process in the case of using microservices architecture because of building,
running, and deploying all the services. When a system gets bigger and
scales out, container orchestration comes in handy. Kubernetes is a container
orchestration platform for managing containerized workloads and services. It
takes care of scaling and failover for the application, provides deployment
patterns, and more.

The last part of this section is about Machine Learning Pipelines. ML Pipeline
implements processes to accelerate, manage and deploy machine learning
models. It starts with the ingestion of new training data, validating and
preprocessing the data, continues with the machine learning model training,
analysis, and validation, and ends with the model deployment. For a building
such a pipeline we can use TensorFlow Extended, which is a library that
supplies all of the components that are needed.

All of the methods that I described in this chapter are the basis for the
implementation in this thesis. With the knowledge I gained, I can reconstruct
the architecture, including Kubernetes, and implement Machine Learning
Pipeline into our application.

35

36

Chapter 4

Implementation

In this chapter I describe proposed changes to the application and the imple-
mentation of these changes. The goal is to refactor the application based on
the researched and described methodology in the previous section. The first
half of the chapter describes proposed changes and the other half deals with
implementation description. The benefits and results will be discussed in the
next chapter.

B a1 Proposed changes

The main goal of this thesis is to analyze the software architecture, research
methodology, propose, and implement changes that can boost application
performance, and encapsulate different services in a microservices architecture.

The main proposed change is in the application architecture. In the Figure
4.1] is shown to-be architecture diagram. For applications that implement
machine learning and gather data for improving this model every day, it is
useful to create a Machine Learning (ML) Pipeline. Application in current
version has machine learning logic implemented in Recommender service, as
we can see in the Figure 2.1 One of the last steps in the ML Pipeline is
Model Deployment. As previously described, the ML model should have its
own server. The server should listen to requests from the client and respond
with the prediction. This is how we can also achieve encapsulation of each
service and we also improve the microservices architecture - in this case, it
is scaling up by microservice decomposition (splitting one service into two
separate ones).

In this case, the Recommender service will be split into Recommender and
Predictor. Recommender handles requests from a web application (client)
either for searching a certain place or area, or request for estimating the

37

4. Implementation

occupancy for the place. Request for estimating the occupancy level will be
handled by the new Predictor service, which will respond with the occupancy
levels for every 15 minutes during the day for the next 5 days.

Another useful feature of the ML pipeline is having a database for generated
models and datasets. Each record in the Model database is described by
model name, dataset file, encoding class file, object__ids model file, groups
model file, and groups in NumPy array format file. Each of these files will be
described in the next sections. Storing and versioning datasets can help us
compare statistics of datasets or evaluations of models. With this information,
we can improve the model or dataset. My idea is to create a Postgres database
that will be storing these files and it will be attached to the Predictor service.

Furthermore, I create a pipeline that will handle all of the ML steps. Predictor
service will include the whole pipeline process, from receiving a new dataset,
through validation and processing to generating and evaluating the model
with each run. If the pipeline is successful, a new model will be deployed to
the production environment.

The last step is to create a container orchestration by using Kubernetes for
easier deployment and monitoring, managing, or replicating services.

38

4.2. Machine Learning Pipeline

Web frontend Mobile app
Response Request Request Response
Backend
\ Y
Recommender service Explorer service
API API
OSM OSM

< T <— — —
o=)

Request Reponse

Predictor service

Occupancy model
——

ML Pipeline

Figure 4.1: New application architecture

B 4.2 Machine Learning Pipeline

In this section, I describe the implementation of the Machine Learning Pipeline
based on the knowledge I gained from research in the previous chapter. Each
step of the pipeline is described in standalone sections with a code snippet.
The first three steps are implemented using TensorFlowExtended (TFX)
library and the rest is our custom code or components from sklearn library. 1
implemented the pipeline in the Jupyter Notebook. The implementation was
based on TensorFlow documentation [25].

39

4. Implementation

B 4.2.1 Data ingestion

In this step of the pipeline, I read data from the request body that is sent from
the Recommender service. Recommender has a scheduler that every 24 hours
(approximately at 2:00 am) create a new dataset. Data are loaded from the
DataPoint database that contains measurements from volunteers, but before
loading, we have to check if there are places that have been updated in OSM
recently. If a place has been updated, we update this place in our database of
places. After loading measurements data, dataframe is created by appending
data from measurements and places records. Each measurement contains
information about the place in which the measurement was made, and this
information is used for finding this specific place in the Place database. When
this place was found and retrieved from the database, we read the features
we need for creating the dataframe.

When the creation of dataframe is done, we serialize it to JSON format
and send it as a request for generating new models to the Predictor service.
Predictor handles the request, deserializes the request data back to dataframe.
Because new models are about to be created, a new record in the Model
database is created as well. This dataframe is stored in the database as
comma-separated value format file.

In the following code snippet is shown an example record of dataframe stored
in comma-separated value format.

id,time ,object_id,type,coords,crowded_ratio,people_num,name,
address ,opening_time ,city,population,highway,parking,living,
public_transport ,hashed_key,server_ts,timezone,coords_device

0,2021-07-21 06:20:21.432000+00:00,39
a60347739693e3c5645ca7fd68£d20 ,shop," (49.8325153,

18.2637946)",2,,"Alza, Novin sk , Moravsk Ostrava","{’
place_mname’: ’Alza’, ’road’: ’Novin sk ’, ’suburb’: °’
Moravsk Ostrava’, ’city’: ’Ostrava’, ’municipality’: °’
okres Ostrava-m sto’, ’county’: ’Moravskoslezsk kraj’, ’
state’: ’Moravskoslezsko’, ’postcode’: ’702 00’, ’country’:
2 esk republika’, ’country_code’: ’cz’}","{""mo"": [480,
12001, ""tu"": [480, 1200], ""we"": [480, 1200], ""th"":
[480, 1200], ""fr"": [480, 1200], ""sa"": [480, 1200], ""su"

". [480, 1200]}",Ostrava ,304880.0,False,False,False,7,
$2a$12$IVepg05nfcjCSK939ueD308Y51PXZKstszh4v05w5DesT4uijQUO
,2021-07-21 06:20:22.169100+00:00, Europe/Prague,

The next step is to create a TFRecord format file that will contain the data
from dataframe represented as tf.Example data structures. In tf.Example,
each record contains one or more features that would represent the columns in
our data. The reason for using such a format is that some TFX components
work only with this format. Before creating TFRecord, the dataframe is
modified by adding new columns (such as retail chain and timestamp) and
filtering out records that have empty values in columns that we require having
them as non-empty.

40

14

4.2. Machine Learning Pipeline

The following code snippet shows an example of how to create TFRecord
from dataframe in python.

tf_record_writer = tf.io.TFRecordWriter (tfrecords_filename)
for index, row in df.iterrows():
example = tf.train.Example(

features=tf.train.Features (
feature={

"type": _bytes_feature(row["type"]l),

"coords": _bytes_feature(row["coords"]),

"crowded_ratio": _int64_feature (rowl["
crowded_ratio"]),

"people_num": _float_feature(row["people_num
"1),

}
)
)

tf_record_writer.write(example.SerializeToString())
tf_record_writer.close ()

Generated TFRecord we can now load in ExampleGen component. This
component handles the process of ingesting, splitting, and converting the
datasets. Datasets can be read from local or remote folders. In our case, we
read the local TFRecord by using ImportExampleGen component. Each of the
ExampleGen components allows us to configure input settings (input_ config)
and output settings (output_ config) for our dataset. We can configure how
the data should be split. Often we would like to generate a training set
together with an evaluation and test set. We can define the details with
the output configuration. In the code snippet below, while data ingesting,
I defined the output config to split the dataset in two-way split: training
and evaluation sets of ratio 2:1. The ratio settings are defined through the
hash_buckets.

output = example_gen_pb2.0utput (
split_config=example_gen_pb2.SplitConfig(splits=[
example_gen_pb2.SplitConfig.Split(name=’train’,
hash_buckets=2),
example_gen_pb2.SplitConfig.Split(name=’eval’,
hash_buckets=1)
]
))

example_gen = ImportExampleGen (input_base=_data_root,
output_config=output)
context.run(example_gen)

On line 10 I execute the component as part of an interactive pipeline, the
metadata of the run is shown in Jupyter Notebook. The outputs of the
component are shown in Figure 4.2 In the folder structure we can find
the outputs in ImportExampleGen folder, where input dataset is split into
Split-train and Split-eval folders, containing compressed TFRecords.

41

4. Implementation

v ExecutionResult at 0x7fb674267850
.execution_id 1
-component jImportExampleGen at 0/ hG74267h80
.component.inputs {}

.component.outputs
['examples’] | channel of type "Examples’ (1 artifact) at 0x7fh70c2d0280

.type_name Examples

._artifacts

[0] v Artifact of type 'Examples’ (uri:
fartifacts/importExampleGenfexamples/1) at 0x7fhG6738d176

.type <class 'thx.types.standard_artifacts.Examples’>
.uri Jfartifacts/ImportExampleGen/examples/1
.span 0
.split names ["train”, "eval’]

.version 0

Figure 4.2: ExampleGen component output

B 4.2.2 Data validation

In this section, I describe the process of validating ingested data from the
previous ML step. The data validation step checks that the data in a pipeline
is what our feature engineering step expects. It assists us in comparing
multiple datasets. For example, we can check statistics in the training dataset
against the evaluation dataset or statistics in current and previous datasets
still align. These statistics are able to highlight whether a feature contains a
high percentage of missing values or if features are correlated.

It also checks for data anomalies or whether the data schema hasn’t changed.
Data anomalies could be values that do not match the expected pattern or
other requirements in the dataset. A data schema is a form of describing the
representation of our datasets. A schema defines which features are expected
in the dataset and which type each feature is based on (float, integer, bytes,
etc.). The schema definition of the dataset can then be used to validate future
datasets to determine if they are in line with our previous training sets.

Because we can compare schemas, we can quickly detect if the data structure
in newly obtained datasets has changed (e.g., when a feature is deprecated).

42

4.2. Machine Learning Pipeline

It can also detect if the data starts to drift. This means that our newly
collected data has different underlying statistics than the initial dataset used
to train the model.

A potential problem with the input dataset is data bias. Data bias is a type
of error in which certain elements of a dataset are more heavily weighted
or represented than others. A biased dataset does not accurately represent
a model’s use case, resulting in skewed outcomes, low accuracy levels, and
analytical errors [20].

The TensorFlow library offers a tool that does data validation, TensorFlow
Data Validation (TFDV) and it is part of the TFX project. TFDV allows
us to perform the kind of analyses I described previously (e.g., generating
schemas and validating new data against an existing schema). It also offers
visualizations.

The first step in our data validation process is to generate summary statistics
for our data. In the code snippet below, I load the TFRecord dataset with
TFDV and generate statistics for each feature:

1 stats = tfdv.generate_statistics_from_tfrecord(
2 data_location=_data_root + ’/data.tfrecords’)
3 tfdv.visualize_statistics(stats)

For numerical features, TFDV computes for every feature:

1. The overall count of data records

2. The number of missing data records

3. The mean and standard deviation of the feature across the data records

4. The minimum and maximum value of the feature across the data records

5. The percentage of zero values of the feature across the data records

In addition, it generates a histogram of the values for each feature as we can
see in Figure [4.3below by calling visualize statistics function on line 4.

43

4. Implementation

Numeric Features (4)

count missing mean std dev Zeros min median max
crowded_ratio
5,783 0% 1.3 151 49.27% 0 1 5

3K

2K

1K

800

2

=]
=1

1 15 2 25 3 35 4 45

Figure 4.3: TFDV numeric feature statistics visualization on our dataset

05

As we can see from the generated statistics for the crowded_ratio feature, a
lot of zeros are present in the dataset but in that case, zero means that in
the specific time that measurement was made, the place was either closed or
it was empty. Because we get rid of missing values before ingesting the data,
the missing percentage remains zero.

For categorical features, TFDV provides:

1. The overall count of data records

2. The number of missing data records

3. The number of unique records

4. The average string length of all records of a feature

5. For each category, TFDV determines the sample count for each label
and its rank

In Figure is shown generated statistics for the type feature from our
dataset, again the missing percentage is zero because we filtered out missing
categories before ingesting, there are five unique categories and the most
popular is shop.

44

4.2. Machine Learning Pipeline

Categorical Features (16) Chart to show
Standard
count missing unique top freq top avg strlen Olog Gexpand
type
5,783 0% 5 shop 2,284 7.6
SHOW RAW DATA
2K
2K
1K
1K
600
shop supermarket pharmacy restaurant fastiood

Figure 4.4: TFDV categorical feature statistics visualization on our dataset

Once we have generated our summary statistics, the next step is to generate
a schema of our dataset. As shown in the following code snippet, I generate
the schema information from the generated statistics with a single function
call infer _schema and display the result by calling display_schema:

1 schema = tfdv.infer_schema(stats)
2 tfdv.display_schema(schema)

And the results are shown in Table In this visualization, Presence means
whether the feature must be present in 100% of data examples (required) or
not (optional). Valency means the number of values required per training
example. In the case of categorical features, single would mean each training
example must have exactly one category for the feature. The schema that
has been generated here may not be exactly what we need because it assumes
that the current dataset is exactly representative of all future data as well. If
a feature is present in all training examples in this dataset, it will be marked
as required, but in reality, it may be optional.

The schema of the dataset I generated, now becomes handy. TFDV can
validate any data statistics against the schema, and it reports any anomalies.
The following code snippet shows how to generate anomalies and display them.
If there are no anomalies found, the result message is "No anomalies found."
- which is our case. If an anomaly was found, it is shown in a table with
information about features such as feature name, anomaly short description,
and anomaly long description. With this information, we are aware of the
potential issues and we can update the schema and dataset.

1 anomalies = tfdv.validate_statistics(statistics=stats, schema=
schema)
2> tfdv.display_anomalies (anomalies)

45

4. Implementation

Generated Schema from our dataset
Feature Name Type Presence Valency | Domain
address BYTES required - -
city BYTES required - -
coords BYTES required - -
coords__device BYTES required - -
highway STRING required - highway
living STRING required - living
name BYTES required - -
object_ id BYTES required - -
opening_ time BYTES required - -
parking STRING required - parking
retail__chain BYTES required - -
server_ ts BYTES required - -
time BYTES required - -
timestamp BYTES required - -
timezone STRING required - timezone
type STRING required - type
crowded__ratio INT required - -
people__num FLOAT required - -
population FLOAT required - -
public_transport | INT required - -

Table 4.1: Data Schema

Domains
Domain Values
highway "False’, "True’
living "False’, "True’
parking "False’, "True’
timezone "Europe/Prague’,
type "shop’, ’supermarket’, ’fastfood’, ‘pharmacy’, 'restaurant’

Table 4.2: Data Domain

A very important step in validation is to determine how representative the
validation set is in regards to the training set. As shown in the following code
snippet, I load both datasets and then visualize both of them.

I train_stats = tfdv.generate_statistics_from_tfrecord(

2 data_location=example_uri +

>/Split-train/data’)

3 val_stats = tfdv.generate_statistics_from_tfrecord(
|

data_location=example_uri +

5

’/Split-eval/data’)

6 tfdv.visualize_statistics(lhs_statistics=val_stats,
rhs_statistics=train_stats,

lhs_name=’VALIDATION_DATASET’,

rhs_name=’TRAIN_DATASET’)

46

4.2. Machine Learning Pipeline

The results are shown in Figure and in Figure These visualized results
can give us a good overview of how the data looks like in both datasets. For
example, we can now see that the zeros percentage in both datasets in Figure
is very similar and if we look at the generated histogram the rest of the
values are also distributed well. In the case of categorical features in Figure
4.6, we can observe similar results.

Categorical Features (16) Chart to show
Standard
count missing unique top freqtop avg strlen
type
1,911 0% 5 shop 756 7.6
3,872 0% 5 shop 1,528 7.6

SHOW RAW DATA

1K
1K
600
200

shop supermarket pharmacy restaurant fastiood

Figure 4.5: Generated validation dataset against traning dataset - detailed on
crowded_ratio feature

VALIDATION_DATASET TRAIN_DATASET

Numeric Features (4)

count missing mean std dev zeros min median max
crowded_ratio
1,911 0% 1.25 1.49 50.65% 0 0 5

3,872 0% 1.33 1.52 48.58% 0 1 5
VALIDATION_DATASET: 0-0.5: 967.92

2K TRAIN_DATASET: 0-0.5: 1, 37
1K
1K
600
200

05 1 15 2 25 3 35 4 45

Figure 4.6: Generated validation dataset against traning dataset - detailed on
type feature

If we want to integrate the validation step into the ML pipeline, TFX provides
a component name StatisticsGen, which accepts the output of ExampleGen

47

4. Implementation

components as input and then performs the generation of statistics. For
generating schema, we use SchemaGen component and if we want to check
the dataset for anomalies, we use ExampleValidator. The following snippet
shows the code that uses all of the mentioned components.

statistics_gen = StatisticsGen(
examples=example_gen.outputs[’examples’])

3 context.run(statistics_gen)

schema_gen = SchemaGen (
statistics=statistics_gen.outputs[’statistics’],
infer_feature_shape=True)
context.run(schema_gen)

example_validator = ExampleValidator (
statistics=statistics_gen.outputs[’statistics’],
schema=schema_gen.outputs[’schema’])

context.run(example_validator)

B 4.2.3 Data preprocessing

The data we use to train our models are often provided in formats our
models can’t consume. For example, in our application, a feature we want
to use to train our model is available only as "True’ and ’False’ values. Any
machine learning model requires a numerical representation of these values
(1 and 0). In this section, I describe how we convert features into numerical
representations so that our machine learning model can be trained with the
numerical representations of the features.

In this step of ML Pipeline, I implement the TFX component Transform
(TFT) to show how can we convert data using the TFX library, and the rest
of preprocessing is done using sklearn preprocessing library.

The key to TE'T is the preprocessing_fn function that defines all transfor-
mations we want to apply to the raw data. When we execute the Transform
component, the preprocessing fn function will receive the raw data, apply
the transformation, and return the processed data. Previously mentioned
function is implemented in Python file (e.g., module.py in our case). When
we execute the Transform component, TFX will apply the transformations
defined in our module.py module file to the loaded input data. The com-
ponent will then output our transformed data, a transform graph, and the
required metadata. The only preprocessing I do in TFT is converting sparse
features to dense - by filling the missing values with default values (zero
for numeric values and empty string for bytes values). At the same time, I
filter out features, we don’t need when training the models. Features we care
about are highway, living, parking, public_transport, population,
crowded_ratio, retail_chain, timestamp, type, and object_id. The
following code snippet shows how I implement TFT in the pipeline.

48

1

~

5

6

w

4.2. Machine Learning Pipeline

transform_file = os.path.join(os.getcwd(), ’./scripts/module.py’
)

transform = Transform(
examples=example_gen.outputs[’examples’],
schema=schema_gen.outputs[’schema’],
module_file=transform_file)

context.run(transform)

TFT is capable of many useful operations for preprocessing such as one-hot
encoding, normalization, bucketing, etc. We may be able to include the whole
preprocessing data process in the TFX environment but for now, the rest of
the process is done using sklearn preprocessing library.

After the transformation is done, processed data are again stored as com-
pressed TFRecords. Records are stored in Transform/transformed_example
folder. From this point, we need to transform TFRecord to pandas dataframe,
because the format that preprocessing methods consume is dataframe.

I pass the dataframe as an argument to the encoding function, that we
implemented in the Predictor. The first step is to create weights for each
feature (type, retail chain, highway, living, parking, population, and pub-
lic_transport). Weights are important in calculating the distance between
categories in variables while estimating the model for prediction (detailed
description in Models evaluation section). The next step is to transform
features into one-hot encoding. Each of the categorical features (type, living,
highway, retail chain, parking) is preprocessed using OneHotEncoder. One-

HotEncoder encodes categorical features as a one-hot numeric array. The

input to this transformer should be an array-like of integers or strings, denot-

ing the values taken on by categorical (discrete) features. The features are

encoded using a one-hot encoding scheme. This creates a binary column for

each category and returns a sparse matrix or dense array [8]. These encoders

for each categorical feature are saved in a dictionary. The following code

snippet shows the example of a one-hot encoding of the ’type’ feature.

categories = [’fastfood’, ’pharmacy’, ’restaurant’, ’shop’, ’
supermarket ’]

Let’s say that some random record from the dataset has a ’shop
> category, after encoding it will be transformed into an
array with binary values. O represents that it doesn’t
belong to the category and 1 represents the fact, that it
belongs to that category mapped by categories array.

one-hot-transform = [0. 0. 0. 1. 0.]

After multiplying one-hot with its weight.

weighted-transform = [0 O O 100 O]

All of the weights, encoders dictionaries, and features are saved into Python
Pickle File (PKL) format that enables objects to be serialized to files on
disk and deserialized back into the program at runtime. This file is also stored
in a database together with the dataset mentioned in the Data ingestion
section.

49

4. Implementation

After saving the encoding classes to the database, another transformation is
done. We create another dataframe column called ’ohe’ that concatenates
all of the one-hot encoded features and numerical features such as population
and public transport multiplied by their weight. This column creates a
unique definition of a place based on its characteristics. One more step before
creating models is to create a set of ’groups’ - newly created ohe column and
set of ’oids’ which is a set of column object_id - unique id of each place from

OSM.

B 4.2.4 Creation of models

In this section, I describe the creation of models for predicting crowdedness.
By this point, data has been ingested, validated, and preprocessed. This
ensures that all the data needed by the model is present and that it has been
reproducibly transformed into the features that the model requires. We want
to ensure that the training proceeds smoothly because it is often the most
time-consuming part of the entire pipeline.

In this step of the ML pipeline, we use our custom-created algorithms for
creating statistics models. This step is hard to implement into the TFX envi-
ronment because TFX uses components that require specific data structures.
Because of that, our pipeline doesn’t use TFX anymore.

We create two types of object models for predicting. The first one is storing
object__ids (oids) and its crowdedness predictions for a week. Second object
model stores groups and their predictions. The process of creating predictions
is the same for both of them.

Note that the sizes of the set of groups and object_ids aren’t necessarily
the same. Object id is unique for each place but the group is described as
encoded characteristics of the place which means that more places can have
the same group (or a very similar one).

When creating predictions for a set of object_ids, only required data for
training are filtered first. We filter out timestamp, crowded_ratio features
that belongs to the specific object_id. We required at least two measurements
for creating predictions. By using the algorithm described in the first chapter,
we are able to create crowdedness predictions for different times of the day.
Predictions for that place (described by object_id) are saved to array of
models together with these information: object_id, length - number of
measurements for that place, position - array representation of transformed
features and prediction_week - matrix representation of crowdedness pre-
dictions. The length of the array of models depends on the number of unique
object__ids in the dataset. Each model is then saved to the dictionary data
structure, where the key is the object_id and values the rest of the data that

50

4.2. Machine Learning Pipeline

the array contains. In the end, after we iterated over all of the records, the
dictionary of models is saved to the database as 'models_ object_id’ PKL.

Creating predictions for a set of groups is the same process as for object_ ids.
An array of models is now represented by group name but the rest remain the
same. While appending new values to the array of models, the NumPy array
of groups ('numpy_ array_ohes’) is created and described as the number
of measurements and position - representation of an array of transformed
features. The length of the array again depends on the number of unique
groups in the dataset. After creating the dictionary data structure, this
dictionary is as well saved to the database as 'models_ ohe’ PKL. Besides
saving the models, we also save created NumPy array of groups to the database
as a NumPy file.

After explaining the creation of models, we can now assume how the predic-
tions are estimated. Usually, one model is able to predict the desired state
but in our case, the more models we have, the more accurate estimation can

be.

B 4.2.5 Models evaluation

At this point in our ML pipeline, we have checked the statistics of our data,
we have transformed our data into the correct features, and we have created
trained models.

Our model analysis process starts with the choice of metrics. It’s good practice
to pick multiple metrics that make sense for our business problem because
one single metric may hide important details. In this section, I will review
some of the most important metrics.

Once the creation of models is finished, the pipeline continues with evaluation.
Firstly, we have to transform an evaluation dataset to the form that the
estimator can handle. T load the evaluation dataset from TFRecord to
pandas dataframe and parse the dataframe. Parsed dataframe is sent as data
request to 'predict’ endpoint. The predictor estimates the model based on
the object__id of the place that requires predictions if sufficient measurements
were provided for this place, otherwise, it estimates the model by using the
distance between object parameters and group parameters. The estimated
model then estimates the crowdedness using mathematical operations. The
output is a list of 672 estimated values. Each value represents 15 minutes
time gap during the day. The output is then parsed for the next five days
also counting today’s day.

To check if the evaluation is correct, I have to check the predicted crowdedness
value to the actual value from the evaluation dataset. After the prediction

o1

4. Implementation

was made, we need to find the correct value in the output array. If the actual
crowdedness value was measured on Tuesday at 15:46, I have to find this
specific day and the value that represent this time. I write a python script
shown in the code snippet below, that counts that position and checks the
day of the week when the measurement was made.

def transform_date(time):
days = {0: ’mo’, 1: ’tu’, 2: ’we’, 3: ’th’, 4: ’fr’, 5: ’sa’

, 6: ’su’}
for fmt in (C%Y-Ym-%d %H:%UM:%S.%f%z’,’%Y-Y%m-%d %H:%M:%Shz’):
try:
datetime_object = datetime.strptime(time, fmt)
break
except ValueError:
pass

day = datetime_object.weekday ()
day_in_arr = days[day]

hour = datetime_object.hour

minutes = datetime_object.minute

quarter = minutes / 15

position = hour * 4 + math.floor (quarter)

return position, day_in_arr

With this information, I am able to check the actual value against the
predicted one. I store all of the actual values and all of the predicted values
in separate arrays. Actual values are represent by crowded_ratio, which is
a number from 0 to 5. Predicted values aren’t integers, but floats. Floats
round up or down depending on their value, so it becomes an integer that
can be checked against actual value.

To calculate many classification metrics, it’s necessary to first count the
number of true/false positive examples and true/false negative examples in
our evaluation set. True positives - Training examples that belong to this
class and are correctly labeled as this class by the classifier. False positives -
Training examples that do not belong to this class and are incorrectly labeled
as this class by the classifier. True negatives - Training examples that do
not belong to this class and are correctly labeled as not in this class by the
classifier. False negatives - Training examples that belong to this class and
are incorrectly labeled as not in this class by the classifier. With this matrix,
called confusion matrix, we are able to calculate other metrics such as:

Accuracy - defined as (true positives + true negatives)/total examples, or the
proportion of examples that were classified correctly. This is an appropriate
metric to use for a dataset where the positive and negative classes are equally
balanced, but it can be misleading if the dataset is imbalanced.

Precision - defined as true positives/(true negatives + false positives), or the
proportion of examples predicted to be in a positive class that was classified
correctly. So if a classifier has high precision, most of the examples it predicts
as belonging to the positive class will indeed belong to the positive class.

52

4.2. Machine Learning Pipeline

Recall - defined as true positives/(true positives + false negatives), or the
proportion of examples where the ground truth is positive that the classifier
correctly identified. So if a classifier has a high recall, it will correctly identify
most of the examples that are truly in the positive class.

Figure gives us a visual idea of how Precision and Recall differ from each
other.

relevant elements

false negatives true negatives

o o ° o o

true positives false positives

retrieved elements

How many retrieved How many relevant
items are relevant? items are retrieved?
Precision = ——— Recall = ——

Figure 4.7: Precision and recall [§]

Another way to generate a single number that describes a model’s performance
is the AUC (area under the curve). The curve is the receiver operating
characteristic (ROC), which plots the true positive rate (TPR) against the
false positive rate (FPR).

One more important metric is calculating Mean absolute error (MEA). The
numerical value for each training example is compared with the actual value.

MAE = 13|y — 4

53

4. Implementation

where n is the number of training examples, y is the true value, and ¥ is
the predicted value. For each training example, the absolute difference is
calculated between the predicted value and the true value. In other words,
the MAE is the average error produced by the model.

The results of all of these metrics will be discussed in the next chapter.

B 4.2.6 Model deployment

The deployment of your machine learning model is the last step before others
can use your model and make predictions with it. The most common way
today to deploy a machine learning model is with a model server, which I
will focus on in this section. The client that requests a prediction submits
the input data to the model server and in return receives a prediction. This
requires that the client can connect with the model server.

I have created a Python web application using the Django framework (same
as Recommender or Explorer services). I defined the endpoints that the
Predictor will handle. The important endpoint is ’predict’ that parse the
request data and send them to the model prediction. The response is a
response code with the data, that model predicted. Another endpoint is
for generating new models. The request is sent from Recommender with
requests data that contains dataframe that has been generated from the
latest measurements. Newly generated models and datasets are stored in the
Postgres database that is attached to this backend.

B a3 Summary

In this chapter, I discussed proposed changes to the application. The main
goal was to implement Machine Learning Pipeline and split the logic of the
Recommender service into two separate Recommender and Predictor services
and create a database for saving generated models. In ML pipeline I work
with TensorFlowFExtended and sci-kit learn libraries.

I start with describing steps in ML Pipeline. Firstly, data has to be ingested
into the pipeline. This step is called 'Ingesting data’ Taking our project as
an example, I showed how to convert dataframe into TFRecord, which is a
file format that accepts components from the TFX library. We load the data
to ExampleGen data structure with the output configuration that split the
input dataset into train and evaluation sets.

The next step is 'Data Validation’ In this step, we use the TensorFlow-
DataValidation component, which has a few very handy functions. We are

o4

4.3. Summary

able to load the TFRecord into TFDV and the output is statistics with
visualization. I discussed how to generate schemas and how to compare two
different datasets based on their statistics and schemas. We are also able to
validate the dataset by detecting any kind of anomalies.

The third step, 'Data Preprocessing’ is effective preprocessing data in our
machine learning pipelines with TensorFlow Transform (TFT). I described
how to write the preprocessing_fn function, provided an overview of some
available functions provided by TFT, and discussed how to integrate the
preprocessing steps into the TFX pipeline. Only a validation of missing data
was preprocessed using TF'T, the rest of preprocessing is done in our project
using sklearn preprocessing library. We load the important features that
step into to training model and we create weights for each of the features.
Categorical features are converted to one-hot encoders, which is a process
of encoding categorical features as a one-hot numeric array. This creates a
binary column for each category and returns a dense array. Output values
are then multiplied by their weight. Before models are being created, a set of
groups and a set of object_ids are created. Groups are defined as a string
that is concatenated from each input transformed feature, defined by its
characteristics (such as category, living, highway, parking, population, etc.).

Now that the data has been preprocessed, it is time to train our models. For
each data in a set of groups and set of object_ ids we generate a statistics
model with predictions of crowdedness for each day in a week. These models
are both saved with the results in the database.

Before deploying the model, we have to evaluate it first. Evaluation is done
by predicting all places’ crowdedness from the evaluation dataset. Each place
is parsed to a form that the Predictors estimator can handle as an argument,
and the output is an array of predictions of busyness for every 15 minutes for
the next five days. We compare the actual value that was measured by a user
from the testing dataset and the predicted value for that specific time and
day of the week. I use several classification metrics such as confusion matrix,
accuracy score, precision and recall curve, and ROC curve to determine the
Predictor’s success rate.

The last part is dedicated to 'Model deployment’. I create a web application
with the Python framework Django. I create API endpoints in the web app,
that handles several requests, e.g., predicting, generating model, generating
record. I implemented a Postgres database that stores generated models for
data and models versioning.

55

56

Chapter 5

Impact of implemented changes

In this chapter, I discuss the results and benefits of implemented changes and
the overall impact of the implementation on the application.

B 5.1 Microservices decomposition

When implementing an application with Machine Learning Pipeline it can
be very handy to have a separate service for that. It gives us the freedom
to choose what tool or framework is right for developing such a complex
pipeline as well as choosing the right data storage for example, for saving
models. In case of failure of generating new models from a new dataset
or failure of prediction of some state, we are able to isolate it accordingly.
Developing and testing such a service depends now on a smaller team of
developers which eliminates problems such as waiting for others to finish and
test the functionality of another use case, large codebase, and eventually less
misunderstanding, which is very common in the development world. Another
benefit and advantage mentioned in microservices is the ability to scale if
needed in the future in case of the increasing popularity of the application.

I evaluate the separation of responsibilities from Recommender into Recom-

mender service and Predictor (ML) service as a benefit to the application
based on the believes mentioned in this section.

. 5.2 Data validation

During the implementation of the Machine Learning Pipeline, I encounter
a very useful tool in the TensorFlow Data Validation (TFDV) component

o7

5. Impact of implemented changes

for visualizing the statistics and schema of the dataset. The visualization of
features in graphs, together with information about its count, missing values,
number of zeros, minimum or maximum numeric value, or number of unique
values in categorical features, etc.

Providing these statistics (Figure|A.1)), I can tell that the dataset has too many
measurements where the crowded ratio was zero and just a few measurements
where the crowded ratio was 5. This can lead to inaccurate predictions in
busy or rush hours. In the case of the population feature, which describes
the population of the city place where the measurement was made, from
the statistics I can see that many measurements were made in small cities
up to 100k inhabitants and cities that have more than 1 million inhabitants
and there are little examples of cities that are in between this range. In the
case of categorical features, highway and parking features having a balanced
number of examples (almost 1:1) is a good metric for training the model. On
the other hand, the category of the place where measurement was made is
again imbalanced, for example, the ratio of shops and restaurants is 3.6:1.

These statistics can be compared, for example, if we split the dataset into
training and evaluation sets, we can check if the data still align.

Another handy function that the TFDV component provides, is generating
the data schema. We are able to see, what data types describe features if
the feature is required (if it’s present in every record) and we can validate
the schema against the generated statistics to see if there are any anomalies
or outliers present. Again, we can compare, for example, schema from the
previous dataset that has been used for training models with the current
schema to check if data types still correspond.

B 53 Models versioning

Together with the implementation and deployment of ML service, I created
a new data storage for saving and versioning models and datasets. We are
able to look back into old models or datasets, compare them with new ones,
or generate statistics against any data from the past. This is very beneficial
when validating the data as I mentioned in the previous section. It is useful
not only when storing newly created models but also for querying the data
based on the attribute value (e.g., date of the creation, or name of the model).

The original implementation was through the file system, where we had to
iterate through existing directories and folders and create new ones if we
needed to. Searching and retrieving in such a way is difficult and unnecessarily
demanding.

Implementing the database for saving and versioning models and datasets

o8

5.4. Models evaluation

makes working and querying the models, datasets, or attributes easier.

. 5.4 Models evaluation

In this section, I discuss the results I received by using different classification
metrics that evaluate ML models’ success and accuracy.

As I described in the Implementation chapter in the Evaluation models section,
predicted values from the estimator are floating points that are rounded to
integers so they can be compared to the actual values from measurements.
In reality, the traffic graph that represents the estimated predictions is using
the range between two values - (0,1) as crowded ratio 1, (1,2) as crowded
ratio 2, etc. That’s why this evaluation isn’t necessarily the most accurate.

First of all, I generate the confusion matrix that provides us the number
of true positives, true negatives, false positives, and false negatives values
required as an input for other metrics. Besides, by investigating the output
values we can evaluate how accurate predictions are. The result is shown in
Table [5.1L

Confusion matrix
551136 |15 |5 0
50 |58 |36 |13 |1
60 |41 |72 |45 |6
32 |31 |44 |60 |23
5 9 16 | 27 |47
6 5 2 9 11

OIN OO

Table 5.1: Confusion matrix

Columns in this matrix represent predicted values from 0 to 5. Rows represent
actual values. The diagonal represent true positive value, which means that
predicted and actual value match. As we can tell, the most precise predictions
are when predicts 0 value and the worst predictions are for value 5, which
makes sense based on the statistics generated and discussed in the previous
section. To provide a general view of how to read the matrix [row, column], I
describe the predictions for value 0. By far we know that the first column
represents predicted zeros on evaluation data. On [0,0] position, predicted
and actual value matches. On [0,1] position, 50 values were predicted as 0,
but the actual value was 1 - this is labeled as false positive. On [0,2] position,
60 values were predicted as 0 but the actual value was 2, and so on. On
position [1,0], 1 was predicted but actual was 0 is labeled as a false negative.
As the distance between indices grows, the number of incorrectly predicted
values decreases, which is a good sign that the predictor is very close to the
actual value.

99

5. Impact of implemented changes

In Table 5.2 we can see an overview of classification metrics and results, index
of result arrays start from 0 and represent category number (0-5).

The precision score for each category is the number of true positives divided
by the total number of elements labeled as belonging to the positive class.
By looking at the result, we can tell that categories 0 and 4 have the most
valid results because, in the case of category 4, 47/88 predicted values were
predicted correctly.

The recall score for each category is the number of true positives divided
by the total number of elements that actually belong to the positive class.
By investigating the results, we can see that category 0 missed only less ten
10% actual values because it correctly matched 551/607 values. Category 5
is again 0 in the results because 0/33 were predicted.

Accuracy score is a single number, that calculates all correctly labeled
values as true positives (actual and predicted value belongs to the same
category) and correctly labeled values as true negatives so that the predicted
value doesn’t belong to the rest of the categories. Almost 60% accuracy is in
my point of view a good number.

Calculating mean absolute error is a necessity in the evaluation. If we
think about the number of categories that our predictor has to estimate
values, the absolute value of an error can be 5. The best value for MAE is 0.
The output of MAE is around 0.63, which means that the estimator made an
average error just by 0.6 between actual and predicted values. If we get back
to the part where I describe how the traffic graph plot the values, this error
is still between the range in the same category. I consider this number as a
good sign that the estimator is very close to the actual values.

Metric Results

Precision score [0.78267045, 0.32222222, 0.38918919, 0.37735849,
0.53409091, 0.]

Recall score [0.907743 , 0.36708861, 0.32142857, 0.31413613,
0.44339623, 0.]

Accuracy score 0.5974222896133434

Mean absolute error 0.6322971948445792

Table 5.2: Classification metrics results

In Figure [5.1] are shown classification metrics AUC and Precision vs Recall
curve represented in graphs.

In Figure |5.1b|is shown AUC. That is defined by True Positive Rate (TPR)
against False Positive Rate (FPR). TRP is calculated as true positives / (true
positives + false negatives) or Recall score and FPR is calculated as false
positives / (false positives + true negatives). As the ROC moves further
away from the x-axis toward the upper left of the plot, the model improves.

60

5.5. Summary

Ideal TPR is 1, on the contrary, ideal FPR is 0. The closest to these values
is category 0, the worst is category 5.

In Figure is shown precision score against recall score. Reviewing both
precision and recall is useful in cases where there is an imbalance in the
observations between the classes. For example in our case, there are many
examples of category 0 and only a few examples of category 5. A no-skill
classifier cannot discriminate between the categories, the curve in this case
changes based on the distribution of the positive to negative classes but it
tends to go towards the point (0,0). A skillful model is represented by a curve
that goes towards (1,1), the closest to this point is again category 0.

. ROC curve
Precision vs. Recall curve

—— Crowdedness value 0

Crowdedness value 1
—— Crowdedness value 2 08
—— Crowdedness value 3
= Crowdedness value 4
—— Crowdedness value 5

=
o

=
=

— Crowdedness value 0

Crowdedness value 1
— Crowdedness value 2
— Crowdedness value 3
— Crowdedness value 4
— Crowdedness value 5

Precision
Tue positive rate

=)
(=)

=
=3
=
=1

0.0 0z 0.4 06 08 10 00 0z 04 06 o0& 10
Recall False positive rate

(a) : Presicion vs Recall curve (b) : ROC curve (AUC)

Figure 5.1: Classification metrics represented in graphs

B 55 Summary

In this chapter, I discussed the overall impact of implemented proposed
changes to the application. I described that the decomposition of Recom-
mender to Recommender and Predictor (ML) service was beneficial in our case
because we separated the responsibilities and we allow both of the services to
scale, deploy, monitor, and manage independently.

Another benefit is that I implemented a Postgres database for saving and
versioning generated models and datasets. Few benefits I can name are:
reducing the complexity of retrieving the models and datasets, querying data
based on the different attributes, overall transparency of models.

When implementing Machine Learning Pipeline, several tools for validation
of the dataset come in handy. I was able to see the statistics of the dataset
and thus we can tell that the dataset has its issues, which can cause that
predicted values aren’t very accurate in some cases. These statistics can be
compared against each other and we can check if data still align.

61

5. Impact of implemented changes

The last part is dedicated to models evaluation. I discussed the results of
classification metrics that have been used. I can tell that the predictions are
60% accurate and the average error produced by the model is 0.6, which is a
small number when the range of an error can be from 0 to 5. That means,
that the predictions are inaccurate by 0.6 decimal points from the actual true
value. Another observation I can see is that when the model is predicting
category 0, it is almost 90% correctly matched because in the training dataset
there is a huge imbalance in measurements of crowded ratio (thousand of
measurements with crowded ratio 0 and just a few hundred with crowded
ratio 5 or other). On the other hand, when predicting category 5, the model
fails.

62

Chapter 6

Proposal for further application
development

In this chapter, we describe suggestions that can be done to improve the
estimator predictions, and what other steps can be done in enhancing the
automation of the model life cycle.

Based on the results we achieved by evaluating the model we could see that
the measurements dataset is imbalanced. If we could be able to acquire more
balanced measurements such as measurements from different times of the
day in various places (e.g., small local shops, big supermarkets, city parks,
restaurants, etc.) in the cities with various populations, and during empty
times, busy hours and medium traffic, we would be able to train the model
with diverse data and thus, the model predictions would be more accurate
for different times of the day and more diverse places. This is not an easy
task to achieve, because it depends on the number of volunteers throughout
the republic.

Another suggestion is in the step of evaluating the model, where instead of
rounding predicted values, I would create intervals that the predicted value
belongs to and transform in such a way also the crowded ratio number. This
transformation would bring us better results in the evaluation of the model.

In the machine learning pipeline, we introduced the TensorFlow Transformer
component, which is responsible for data preprocessing. In the implementa-
tion, we use the Transformer for filling in missing values, but it is capable
of many other methods for preprocessing such as converting from categor-
ical feature value to one-hot encoded value or normalizing numeric values.
Because this preprocessing was originally done in the implementation, I
didn’t implement it in the Transformer component. In future work, I suggest
implementing whole data preprocessing into the Transformer component.

The last proposal is to set up Kubernetes - container orchestrator tool. It

63

6. Proposal for further application development

provides the user the ability to configure system behavior and automates
container management by configuration. This can be very beneficial for
applications with microservices architecture when developing, testing, or
deploying the application to production. It provides options for load balancing,
storage orchestration, self-healing of the container, etc.

64

Chapter 7

Conclusion

In this thesis, the goal was to analyze the structure and methodology of
the application for social distancing kdynakoupit.cz, design and implement
changes for improving the performance of selected service, and implement
machine learning pipeline that ingests, validates dataset, and evaluates the
models.

The first part is dedicated to the description of the application structure,
where we had to analyze and get to know the application architecture first. It
is based on microservices architecture, composed of four independent services.
We described the responsibilities and purpose of each service. Furthermore,
we researched existing solutions for estimating occupancy levels.

In the next section, we explain the methodology and perform research on how
to implement a machine learning pipeline using modern tools and technologies
such as TensorFlow. The key benefit of machine learning pipelines is the
automation of the model life cycle steps. When new training data becomes
available, a workflow that includes data validation, preprocessing, model
training, analysis, and deployment should be triggered.

In the third part, we propose a change to separate the responsibilities of
the Recommender service to the Recommender service and Predictor service,
which would serve as a standalone machine learning backend with a machine
learning pipeline (see Figure 4.1)). After proposing changes, we described
their implementation. We created a separate backend server for the machine
learning model called Predictor and achieved separation from Recommender.
A Postgres database was also attached to this service, for saving and versioning
new datasets and models. The last part of the implementation is creating a
machine learning pipeline. I implemented steps for ingesting a new dataset,
its validation, preprocessing, and evaluation.

The last part of this thesis deals with the impact of implemented changes.

65

7. Conclusion

We discussed the benefits of the implementation such as machine learning
service independence and database creation. When implementing a machine
learning pipeline, several tools for data validation were useful in determining
whether the dataset is, for example, balanced or imbalanced. The results
achieved in the evaluation of the model using different classification metrics
were also discussed in this section.

The output of this thesis is the overall analysis of the application, implemented

and tested the functionality of a new microservice that serves as a machine
learning model server.

66

Bibliography

[1] Tomas Vintr etc. Tomas Krajnik. Warped hypertime representations
for long-term autonomy of mobile robots [online], 2019, [cit. 2022-01-04].
Available on: https://ieeexplore.ieee.org/document/8754723.

[2] Romana Gnatyk. Microservices vs monolith [online], 3.10.2018
[cit. 2022-01-04]. Available on: https://www.n-ix.com/|
microservices-vs-monolith-which-architecture-best-choice-your-business/|

[3] Sam Newman. Building microservices, 2021. ISBN: 978-1-492-03402-5.

[4] Docker. What is container? [online], [cit. 2022-01-04]. Available on:
https://www.docker.com/resources/what-container,

[5] Docker. Docker overview [online], [cit. 2022-01-04]. Available on:
[//docs.docker.com/get-started/overview/|

[6] Kubernetes. What is kubernetes? [online|, [cit. 2022-01-04]. Available on:
https://kubernetes.io/docs/concepts/overview/components/|

[7] Hannes Hapke and Catherine Nelson. Building machine learning pipelines,
2020. ISBN: 9781492053194.

[8] Scikit-learn. sklearn.preprocessing.onehotencoder [online], [cit. 2022-
01-04]. Available on: https://scikit-learn.org/stable/modules/
|gsenerated/sklearn.preprocessing.OneHotEncoder.htmll

[9] Kdynakoupit.cz. How it works? [online], 2021, [cit.2022-01-04]. Available
on: https://kdynakoupit.cz/|

[10] Google Support. Manage your location history [online], [cit. 2022-01-
04]. Available on: https://support.google.com/accounts/answer/
3118687 ¢hl=enl

67

https://ieeexplore.ieee.org/document/8754723
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.docker.com/resources/what-container
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/components/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://kdynakoupit.cz/
https://support.google.com/accounts/answer/3118687?hl=en
https://support.google.com/accounts/answer/3118687?hl=en

7. Conclusion

[11] Matt D’Zmura. Behind the scenes: popular times and
live busyness information [online], 2020, [cit.2022-01-
04]. Available on: https://blog.google/products/maps/

maps101-popular-times-and-live-busyness-information/|

[12] Google policies. How google anonymizes data [online], [cit. 2022-
01-04]. Available on: https://policies.google.com/technologies/|
[anonymization7hl=en&gl=del

[13] Bill Slawski. Popular times for businesses learned by looking at location

history [online], 2016, [cit. 2022-01-04]. Available on:

|seobythesea.com/2016/12/google-tracking-how-busy/|

[14] Google patents. Point-of-interest latency prediction using mobile device

location history [online], 2016, [cit. 2022-01-04]. Available on:
|/ /patents.google.com/patent/US9470538|

[15] About OpenStreetMaps. Openstreetmaps [online|, [cit. 2022-01-04].
Available on: https://www.openstreetmap.org/about!

[16] Chronorobotics Laboratory. Fremen contra covid [online], 2021, [cit.
2022-01-04]. Available on: https://chronorobotics.fel.cvut.cz/cs/|

[17] Tomé&s Krajnik. What is fremen? [online], 2021, [cit. 2022-01-04]. Avail-
able on: https://github.com/gestom/fremen/wikil

[18] Rani Osnat. A brief history of containers: From the 1970s till now
[online], [cit. 2022-01-04]. Available on: https://blog.aquasec.com/|
la-brief-history-of-containers-from-1970s-chroot-to-docker-2016|

[19] IBM Cloud. Containerization [online], [cit. 2022-01-04]. Available on:
https://www.ibm.com/cloud/learn/containerizationl

[20] VMWare. Container orchestration [online], [cit. 2022-01-04].
Available on: https://www.vmware.com/topics/glossary/content/
|container-orchestrationl

[21] Wikipedia. Yaml [online], [cit. 2022-01-04]. Available on:
wikipedia.org/wiki/YAML

[22] Docker. Docker composer overview [online], [cit. 2022-01-04]. Available
on: https://docs.docker.com/compose/#features|

[23] Kubernetes. = What is kubernetes? [online]|, [cit. 2022-01-04].
Available on: |https://kubernetes.io/docs/concepts/overview/
what-is—-kubernetes/.

[24] Kubernetes. Glossary kubernetes [online], [cit. 2022-01-04].
Available on: |https://kubernetes.io/docs/reference/glossary/
? =

68

https://blog.google/products/maps/maps101-popular-times-and-live-busyness-information/
https://blog.google/products/maps/maps101-popular-times-and-live-busyness-information/
https://policies.google.com/technologies/anonymization?hl=en&gl=de
https://policies.google.com/technologies/anonymization?hl=en&gl=de
https://www.seobythesea.com/2016/12/google-tracking-how-busy/
https://www.seobythesea.com/2016/12/google-tracking-how-busy/
https://patents.google.com/patent/US9470538
https://patents.google.com/patent/US9470538
https://www.openstreetmap.org/about
https://chronorobotics.fel.cvut.cz/cs/ai-vs-covid
https://chronorobotics.fel.cvut.cz/cs/ai-vs-covid
https://github.com/gestom/fremen/wiki
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://www.ibm.com/cloud/learn/containerization
https://www.vmware.com/topics/glossary/content/container-orchestration
https://www.vmware.com/topics/glossary/content/container-orchestration
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
https://docs.docker.com/compose/#features
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://kubernetes.io/docs/reference/glossary/?fundamental=true

7. Conclusion

[25] TensorFlow. Tensorflow [online], [cit. 2022-01-04]. Available on:

|/ /wuw.tensorflow.org/.

[26] Telus International. Seven types of data bias in machine learning [online],
[cit. 2022-01-04]. Available on: https://www.telusinternationall
|com/articles/7-types-of-data-bias-in-machine-learning|

69

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.telusinternational.com/articles/7-types-of-data-bias-in-machine-learning
https://www.telusinternational.com/articles/7-types-of-data-bias-in-machine-learning

70

Appendix A

Additional Figures

[VALIDATION_DATASET TRAIN_DATA,

MNumeric Features (4)

count missing mean std dewv
public_transport

2,013 () 22.19 12.76

4,034 0% 22.07 12.84
population

2,013 () 558k 585k

4,034 () 586k 589k
people_num

2,013 () 37.09 44 61

4,034 () 38.8 47.89
crowded_ratio

2,013 0% 1.25 1.48

4,034 () 1.32 151

Categorical Features (16)

count missing unigue top
bype

2,013 () T shop

4,034 () T shop
timezone

2,013 0% 12 Europel, ..

4,034 0% 15 Europe/...
timestamp

2,013 0% 2,012 "162760...

4,034 0% 4,028 "162567...

SET
ZEeros min
1.34% 1]
1.54% 4]
0% 279
0% 240
1.69% MNaM
1.36% MNaM
49.58% 4]
47.84% 1]
freq top awg str len

756 7.48
1,528 7.51
1,636 13.35
3,267 13.37
2 14.96
3 14.99

Chart to show

Standard b
ELL max Okg Cexpand []percentages
22 T4
200
22 54
1o 30 S0 7O
305k 1.25M a00
305k 1.25M
100K 400K TOOK im
23 MNal
20 Nan %
20 a0 140 200
1 5 400
1 5
0.5 15 25 3.5 4.5
Chart to show
Standard v
Oiog Cexpand [percentages
SHOW Rau DATA -
1K
200
sh...su.. ph._. re_. fa._ off._ park
SHOW R DATA
0.2
2 L] 10 14
SHOW RO DATA
0.1

200 800 1400 2000

Figure A.1: Generated statistics on training and validation sets

71

A.AdditionalFigures E B B B B EEEEEEEEESESEESEESEEE S S S S NSNS SNBSS

3 3 N T

Cirr . ®
27 31T ee3zzes oi8 B
K 2 . 23z $32Z@ns oo ¢ 2 g
e E T47 8585288 s27 ¢ 8
%, g 7 esf %87 gBErx =33 § 3
Vo =] S 2o = < g 35 §
K] g3 = i
% E B &
% g & £ coooooo & B T
N zg3ggagass rz o 2
%, - E gg _wo%
o 2 E : -
B, s 3 BEEBENB =z
% g g $58888588% g e
Ny 2 Fiz 58
& i -
41‘% n 33 B
% z ER- £
%, g 2
g Z £ s
W g 2 s H
: g
o 5 3'3
i g £5 o
- 4 ’ 3
.\‘__‘/‘

4

-
~

8 I
",’)

IEB‘
iF
it

sz
E
il

Figure A.2: Detailed view on a specific place with traffic graph

	Introduction
	Outline of the Thesis

	Related work
	State of the art
	Kdy nakoupit - application for social distancing
	Explorer
	Recommender
	Occupancy model

	Summary

	Methodology
	Microservices vs. Monolith
	Monolithic architecture
	Microservices architecture

	Containerization and container orchestration
	History
	Docker
	Kubernetes

	Machine Learning Pipelines
	Data ingestion and versioning
	Data Validation
	Data Preprocessing
	Model Training
	Model analysis
	Model deployment
	Pipeline Orchestration
	TensorFlow
	Apache Beam

	Summary

	Implementation
	Proposed changes
	Machine Learning Pipeline
	Data ingestion
	Data validation
	Data preprocessing
	Creation of models
	Models evaluation
	Model deployment

	Summary

	Impact of implemented changes
	Microservices decomposition
	Data validation
	Models versioning
	Models evaluation
	Summary

	Proposal for further application development
	Conclusion
	Bibliography
	Additional Figures

